Traditional food products are important to our culture and heritage, and to the continued success of the food industry. Many of the production processes associated with these products have not been subjected to an in-depth microbial compositional analysis. The traditional process of curing meat, both preserves a natural protein source, as well as increasing its organoleptic qualities. One of the most important salting processes is known as Wiltshire curing. The Wiltshire process involves injecting pork with a curing solution and immersing the meat into microbial-rich brine which promotes the development of the distinct organoleptic characteristics. The important microbial component of Wiltshire brine has not been extensively characterized. We analyzed the key microbial component of Wiltshire brine by performing microbiome analysis using Next Generation Sequencing (NGS) technologies. This analysis identified the genera, Marinilactibacillus, Carnobacterium, Leuconostoc, and Vibrio as the core microflora present in Wiltshire curing brine. The important food industrial applications of these bacteria were also assessed. The bacterial diversity of the brine was investigated, and the community composition of the brine was demonstrated to change over time. New knowledge on the characterization of key microbiota associated with a productive Wiltshire brine is an important development linked to promoting enhanced quality and safety of meat processing in the food industry.
Traditional food processes can utilize bacteria to promote positive organoleptic qualities and increase shelf life. Wiltshire curing has a vital bacterial component that has not been fully investigated from a microbial perspective. During the investigation of a Wiltshire brine, a culturable novel bacterium of the genus
Halomonas
was identified by 16S rRNA gene (MN822133) sequencing and analysis. The isolate was confirmed as representing a novel species (Halomonas hibernica B1.N12) using a housekeeping (HK) gene phylogenetic tree reconstruction with the selected genes 16S rRNA, 23S rRNA, atpA, gyrB, rpoD and secA. The genome of the new isolate was sequenced and annotated and comparative genome analysis was conducted. Functional analysis revealed that the isolate has a unique phenotypic signature including high salt tolerance, a wide temperature growth range and substrate metabolism. Phenotypic and biochemical profiling demonstrated that H. hibernica B1.N12 possesses strong catalase activity which is an important feature for an industrial food processing bacterium, as it can promote an increased product shelf life and improve organoleptic qualities. Moreover, H. hibernica exhibits biocontrol properties based on its quorum quenching capabilities. Our work on this novel isolate advances knowledge on potential mechanistic interplays operating in complex microbial communities that mediate traditional food processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.