Early life experiences are crucial factors that shape brain development and function due to their ability to induce structural and functional plasticity. Among these experiences, early-life stress (ELS) is known to interfere with brain development and maturation, increasing the risk of future psychopathologies, including depression, anxiety, and personality disorders. Moreover, ELS may contribute to the emergence of these psychopathologies during adolescence. In this present study, we investigated the effects of ELS, in the form of maternal separation (MS), on the structural and functional plasticity of the medial prefrontal cortex (mPFC) and anxiety-like behavior in adolescent male rats. We found that the MS procedure resulted in disturbances in mother-pup interactions that lasted until weaning and were most strongly demonstrated by increases in nursing behavior. Moreover, MS caused atrophy of the basal dendritic tree and reduced spine density on both the apical and basal dendrites in layer II/III pyramidal neurons of the mPFC. The structural changes were accompanied by an impairment of long-term potentiation processes and increased expression of key proteins, specifically glutamate receptor 1, glutamate receptor 2, postsynaptic density protein 95, αCa(2+) /calmodulin-dependent protein kinase II and αCa(2+)/calmodulin-dependent protein kinase II phosphorylated at residue Thr305, that are engaged in long-term potentiation induction and maintenance in the mPFC. We also found that the MS animals were more anxious in the light/dark exploration test. The results of this study indicate that ELS has a significant impact on the structural and functional plasticity of the mPFC in adolescents. ELS-induced adaptive plasticity may underlie the pathomechanisms of some early-onset psychopathologies observed in adolescents.
Clinical studies provide evidence that ketamine and psilocybin could be used as fast-acting antidepressants, though their mechanisms and toxicity are still not fully understood. To address this issue, we have examined the effect of a single administration of ketamine and psilocybin on the extracellular levels of neurotransmitters in the rat frontal cortex and reticular nucleus of the thalamus using microdialysis. The genotoxic effect and density of glutamate receptor proteins was measured with comet assay and Western blot, respectively. An open field test, light–dark box test and forced swim test were conducted to examine rat behavior 24 h after drug administration. Ketamine (10 mg/kg) and psilocybin (2 and 10 mg/kg) increased dopamine, serotonin, glutamate and GABA extracellular levels in the frontal cortex, while psilocybin also increased GABA in the reticular nucleus of the thalamus. Oxidative DNA damage due to psilocybin was observed in the frontal cortex and from both drugs in the hippocampus. NR2A subunit levels were increased after psilocybin (10 mg/kg). Behavioral tests showed no antidepressant or anxiolytic effects, and only ketamine suppressed rat locomotor activity. The observed changes in neurotransmission might lead to genotoxicity and increased NR2A levels, while not markedly affecting animal behavior.
Clinical studies have suggested that early-life stress (ELS) increases the risk of psychopathologies that are strongly associated with dysfunction of dopaminergic neurotransmission. Thus, ELS may interfere with the development and maturation of the dopaminergic system; however, the mechanisms involved in such interference are poorly understood. In the present study, we investigated the effect of ELS on the survival of specific populations of neurons in the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) during postnatal development. First, we injected bromodeoxyuridine (BrdU) into pregnant rat dams on embryonic days 12, 13 and 14 to permanently label midbrain neurons. Then, after birth, the dams and litters were subjected to a maternal separation (MS) procedure to model ELS conditions. The number of BrdU+ neurons and the total number of neurons (cresyl violet+, CV+) were estimated in both male and female juvenile, adolescent, and adult rats. Moreover, sucrose preference and anxiety-like behaviors were studied during adulthood. We found that MS permanently increased the number of BrdU+ and CV+ neurons in the VTA of males. In the SNc, a temporary increase in the number of BrdU+ neurons was observed in juvenile MS males; however, only adult MS males displayed an increase in the number of CV+ neurons. Immunofluorescence analysis implied that MS affected the fate of non-dopaminergic neurons. MS males displayed anxiolytic-like behavior and an increase in sucrose preference. These results suggest that ELS induces distinct dysregulation in the midbrain circuitry of males, which may lead to sex-specific psychopathology of the reward system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.