Infrared (IR) spectroscopy, atomic force microscopy (AFM), and dielectric spectroscopy methods were employed to study structural and dynamic changes in the tannic acid (TA)-stabilized pericardium tissue. Chemically stabilized pericardium tissue is widely used in construction of the tissue derived bioprostheses. IR spectra recorded in the range 400-4000 cm-1 allowed us to recognize different types of TA-collagen interactions. Formation of hydrogen bonds between amine as well as amide NH groups from collagen and hydroxyl groups of TA was analyzed. The AFM imaging showed that the stabilization procedure with TA introduces considerable changes in both surface topography and thickness of collagen fibrils as well as in fibril arrangement on the tissue surface. It was found, that these structural changes have an impact on the dielectric behavior of the TA-stabilized tissue. The dielectric spectra for the native and TA-stabilized tissues were measured in the frequency and temperature ranges of 10(-1) -10(7) Hz and 120-270 K, respectively. The dielectric spectra revealed the relaxation process due to orientation of bound water supplemented by the fluctuation of collagen polar side groups. At the temperatures above approximately 210 K, the relaxation due to ion migration process was observed. It was found that both relaxation processes were influenced by the TA-collagen interaction.
We propose a model to study the adaptation of an evolving population to a given environment. Using the Monte Carlo simulations we find how much the phenotypes of individuals of the population and those required by the environment may differ for the population to grow. We show that survival chances are greater if the number of the phenotype's features is smaller. In the case when a part of the population may colonize an empty niche, we show that there is a minimum value of the similarity of the two environments in order that such a colonization may succeed. We also show that the two populations differentiate with time.[S0031-9007(96)00054-3]
The majority of studies on the effects of wind energy development on wildlife have been focused on birds and bats, whereas knowledge of the response of terrestrial, non-flying vertebrates is very scarce. In this paper, the impact of three functioning wind farms on terrestrial small mammal communities (rodents and shrews) and the population parameters of the most abundant species were studied. The study was carried out in southeastern Poland within the foothills of the Outer Western Carpathians. Small mammals were captured at 12 sites around wind turbines and at 12 control sites. In total, from 1200 trap-days, 885 individuals of 14 studied mammal species were captured. There was no difference in the characteristics of communities of small mammals near wind turbines and within control sites; i.e. these types of sites were inhabited by a similar number of species of similar abundance, similar species composition, species diversity (H′ index) and species evenness (J′) (Pielou’s index). For the two species with the highest proportion in the communities (Apodemus agrarius and Microtus arvalis), the parameters of their populations (mean body mass, sex ratio, the proportion of adult individuals and the proportion of reproductive female) were analysed. In both species, none of the analysed parameters differed significantly between sites in the vicinity of turbines and control sites. For future studies on the impact of wind turbines on small terrestrial mammals in different geographical areas and different species communities, we recommend the method of paired ‘turbine-control sites’ as appropriate for animal species with pronounced fluctuations in population numbers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.