Controlled drug delivery is a matter of interest to numerous scientists from various domains, as well as an essential issue for society as a whole. In the treatment of many diseases, it is crucial to control the dosing of a drug for a long time and thus maintain its optimal concentration in the tissue. Heart diseases are particularly important in this aspect. One such disease is an obstructive arterial disease affecting millions of people around the world. In recent years, stents and balloon catheters have reached a significant position in the treatment of this condition. Balloon catheters are also successfully used to manage tear ducts, paranasal sinuses, or salivary glands disorders. Modern technology is continually striving to improve the results of previous generations of stents and balloon catheters by refining their design, structure, and constituent materials. These advances result in the development of both successive models of drug-eluting stents (DES) and drug-eluting balloons (DEB). This paper presents milestones in the development of DES and DEB, which are a significant option in the treatment of coronary artery diseases. This report reviews the works related to achievements in construction designs and materials, as well as preparation technologies, of DES and DEB. Special attention was paid to the polymeric biodegradable materials used in the production of the above-mentioned devices. Information was also collected on the various methods of producing drug release coatings and their effectiveness in releasing the active substance.
This review describes the role of contact lenses as an innovative drug delivery system in treating eye diseases. Current ophthalmic drug delivery systems are inadequate, particularly eye drops, which allow about 95% of the active substance to be lost through tear drainage. According to the literature, many interdisciplinary studies have been carried out on the ability of contact lenses to increase the penetration of topical therapeutic agents. Contact lenses limit drug loss by releasing the medicine into two layers of tears on either side of the contact lens, eventually extending the time of contact with the ocular surface. Thanks to weighted soft contact lenses, a continuous release of the drug over an extended period is possible. This article reviewed the various techniques to deliver medications through contact lenses, examining their advantages and disadvantages. In addition, the potential of drug delivery systems based on contact lenses has been extensively studied.
This work concerns the development of a novel and rapid in situ dispersive liquid-liquid microextraction method for magnetic retrieval of ionic liquid as a new approach for the separation of benzophenone type (BP-type) UV filters via quantification using UPLC with PDA detection. The analytes determined in this study were a group of three benzophenones: 2,4-dihydroxybenzophenone (BP1), 2,2′,4,4′-tetrahydroxybenzophenone (BP2) and 2-hydroxy-4-metoxybenzophenone (BP3). The hydrophilic ionic liquid found suitable for use as an extraction solvent of the targeted analytes was didecyldimethylammonium chlorate (DDAC). An anion exchanger, NaClO 4 was added to promote a metathesis reaction and in situ formed the IL, [DDA][ClO 4 ]. The experimental parameters such as the concentration of IL, the molar ratio of DDAC to NaClO 4 , amount of iron oxide added and volume of water sample were investigated and optimised using a step-by-step optimisation process. The optimum experimental parameters were as follows: 30 mL of sample volume, 1% concentration of DDAC, the molar ratio of DDAC to NaClO 4-1:2, and 5 mg of Fe 3 O 4 magnetic nanoparticles. The proposed extraction method is simple and requires no more than 5 min. The detection limit (LOD) obtained for target analytes ranged from 12.320.0 ng L −1 , while the correlation coefficient (r 2) was from 0.9995 to 0.9999. Finally, the developed method was successfully applied to the determination of BP-type UV filters in environmental water samples, and satisfactory results were obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.