Multiple myeloma (MM) is a plasma cell neoplasm characterized by an abnormal proliferation of clonal, terminally differentiated B lymphocytes. Current approaches for the treatment of MM focus on developing new diagnostic techniques; however, the search for prognostic markers is also crucial. This enables the classification of patients into risk groups and, thus, the selection of the most optimal treatment method. Particular attention should be paid to the possible use of immune factors, as the immune system plays a key role in the formation and course of MM. In this review, we focus on characterizing the components of the immune system that are of prognostic value in MM patients, in order to facilitate the development of new diagnostic and therapeutic directions.
The continually evolving severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has resulted in a vast number of either acute or chronic medical impairments of a pathophysiology that is not yet fully understood. SARS-CoV-2 tropism for the organs is associated with bilateral organ cross-talks as well as targeted dysfunctions, among which acute kidney injury (AKI) seems to be highly prevalent in infected patients. The need for efficient management of COVID-related AKI patients is an aspect that is still being investigated by nephrologists; however, another reason for concern is a disturbingly high proportion of various types of kidney dysfunctions in patients who have recovered from COVID-19. Even though the clinical picture of AKI and COVID-related AKI seems to be quite similar, it must be considered that regarding the latter, little is known about both the optimal management and long-term consequences. These discrepancies raise an urgent need for further research aimed at evaluating the molecular mechanisms associated with SARS-CoV-2-induced kidney damage as well as standardized management of COVID-related AKI patients. The following review presents a comprehensive and most-recent insight into the pathophysiology, clinical manifestations, recommended patient management, treatment strategies, and post-mortem findings in patients with COVID-related AKI.
The pathogenesis of primary proliferative and non-proliferative glomerulonephritides (PGN and NPGN) is still not fully understood, however, current evidence suggests that most cases of PGN and NPGN are the results of immunologic response to different etiologic agents that activates various biological processes leading to glomerular inflammation and injury. Programmed cell death protein 1 (PD-1) is the major inhibitory receptor regulating T cell exhaustion. The aim of this study was to evaluate the frequencies of PD-1-positive and PD-ligand 1 (PD-L1)-positive T and B lymphocytes in patients with NPGN and PGN in relation to clinical parameters for the first time. The study included peripheral blood (PB) samples from 20 newly diagnosed PGN and NPGN patients. The control group comprised of 20 healthy age- and sex-matched subjects. The viable PB lymphocytes underwent labelling with fluorochrome-conjugated monoclonal antibodies anti-PD-1 and anti-PD-L1, and were analyzed using a flow cytometer. The frequencies of CD4+/PD1+ T lymphocytes, CD8+/PD1+ T lymphocytes, and CD19+/PD-1+ B lymphocytes in the PGN group exceeded values obtained both in the NPGN group, and the control group. Alteration of PD-1/PD-L1 pathway may be involved in poorer prognosis, as patients with PGN are characterized by higher frequencies of PD-1-positive and PD-L1-positive T and B lymphocytes than patients with NPGN. Our results suggest that deregulation of PD-1/PD-L1 axis may contribute to the PGN and NPGN pathogenesis. High percentages of lymphocytes with PD-1 and PD-L1 expression may be related to the continuous T-cell activation and development of glomerular inflammation and injury.
Each year, the number of patients who are diagnosed with kidney disease too late is increasing, which leads to permanent renal failure. This growing problem affects people of every age, sex and origin, and its full etiopathogenesis is not fully understood, although the involvement of genetic susceptibility, infections, immune disorders or high blood pressure is suggested. Difficulties in making a correct and quick diagnosis are caused by the lack of research on early molecular markers, as well as educational and preventive activities among the public, which leads to the late detection of kidney diseases. An important role in the homeostasis and disease progression, including kidney diseases, is attributed to interleukins, which perform several biological functions and interact with other cells and tissues of the body. The aim of this article was to systematize the knowledge about the biological functions performed by interleukins in humans and their involvement in kidney diseases development. In our work, we took into account the role of interleukins in acute and chronic kidney disease and kidney transplantation.
Alterations to the programmed cell death protein-1 (PD-1) pathway were previously shown to be involved in a poorer prognosis for patients with proliferative glomerulonephritis (PGN). Here, we investigated the association between several infectious agents and the expression of PD-1 and its ligand (PD-L1) on T and B lymphocytes in patients with PGN and nonproliferative glomerulonephritis (NPGN). A cohort of 45 newly-diagnosed patients (23 with PGN and 22 with NPGN) and 20 healthy volunteers was enrolled. The percentage of peripheral blood mononuclear cells expressing PD-1 and PD-L1 antigens was determined by flow cytometry. We found PD-1 and PD-L1 expression on T and B lymphocytes was higher in PGN patients than in NPGN patients and controls. We also found that reactivation of the Epstein-Barr virus (EBV) correlated with the expression of PD-1/PD-L1 antigens in patients with PGN. Further receiver operating characteristic analysis indicated that PD-1 expression could distinguish EBV-positive PGN patients from those with NPGN or healthy controls. The use of PD-1 expression as a non-invasive marker of PGN should be further investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.