Abnormal epigenetic patterns correlate with effector T cell malfunction in tumors 1 – 4 . However, their causal link is unknown. Here, we show that tumor cells disrupt methionine metabolism in CD8 + T cells, thereby lowering intracellular methionine levels and the methyl donor S-adenosylmethionine (SAM), resulting in loss of H3K79me2. Consequently, loss of H3K79me2 led to low STAT5 expression and impaired T cell immunity. Mechanistically, tumor cells avidly consumed and outcompeted T cells for methionine via high expression of SLC43A2, a methionine transporter. Genetic and biochemical inhibition of tumor SLC43A2 rescued T cell H3K79me2 levels, boosting spontaneous and checkpoint-induced tumor immunity. Moreover, we found that methionine supplementation improved expression of H3K79me2 and STAT5 in T cells, accompanied by increased T cell immunity in tumor bearing models and colon cancer patients. Clinically, tumor SLC43A2 negatively correlated with T cell histone methylation and functional gene signatures. Our work reveals a novel mechanistic connection between methionine metabolism, histone patterns, and T cell immunity in the tumor microenvironment. Thus, cancer methionine consumption is an unappreciated immune evasion mechanism, and targeting cancer methionine signaling may provide an immunotherapeutic approach.
Glioblastoma multiforme is the most aggressive primary brain tumour. At the cellular and molecular levels, several mechanisms responsible for apoptosis or autophagy induction are blocked. Identification of molecular targets stimulating cells to initiate programmed cell death should be performed for therapeutic purposes. A promising solution is the combination of temozolomide and quercetin. The aim of our study was to evaluate the effect of both drugs, applied alone and in combinations, on apoptosis and autophagy induction in human glioblastoma multiforme T98G cells. Our results clearly indicate that quercetin and temozolomide induce apoptosis very significantly, having no effect on autophagy induction. At the molecular level, it was correlated with caspase 3 and 9 activation, cytochrome c release from the mitochondrium and a decrease in the mitochondrial membrane potential. Both drugs are also potent Hsp27 and Hsp72 inhibitors. This suggests that the apoptotic signal goes through an internal pathway. Increased expression of caspase 12 and the presence of several granules in the cytoplasm after temozolomide treatment with or without quercetin preceding appearance of apoptosis may suggest that apoptosis is initiated by ER stress. Additionally, it was accompanied by changes in the nuclear morphology from circular to ‘croissant like’.
Myeloid-derived suppressor cells (MDSCs) expansion is a hallmark of cancer. Three major MDSC subsets defined as monocytic (M)-MDSCs, polymorphonuclear (PMN)-MDSCs and early stage (e)MDSCs can be revealed in human diseases. However, the clinical relevance and immunosupressive pattern of these cells in epithelial ovarian cancer (EOC) are unknown. Therefore, we performed a comprehensive analysis of each MDSC subset and immunosupressive factors in the peripheral blood (PB), peritoneal fluid (PF), and the tumor tissue (TT) samples from EOC and integrated this data with the patients' clinicopathological characteristic. MDSCs were analyzed using multicolor flow cytometry. Immunosuppressive factors analysis was performed with ELISA and qRT-PCR. The level of M-MDSCs in the PB/PF/TT of EOC was significantly higher than in healthy donors (HD); frequency of PMN-MDSCs was significantly greater in the TT than in the PB/PF and HD; while the level of eMDSCs was greater in the PB compared with the PF and HD. Elevated abundance of tumor-infiltrating M-MDSCs was associated with advanced stage and high grade of EOC. An analysis of immunosuppressive pattern showed significantly increased blood-circulating ARG/IDO/IL-10-expressing M- and PMN-MDSCs in the EOC patients compared with HD and differences in the accumulation of these subsets in the three tumor immune microenvironments (TIME). This accumulation was positively correlated with levels of TGF-β and ARG1 in the plasma and PF. Low level of blood-circulating and tumor-infiltrating M-MDSCs, but neither PMN-MDSCs nor eMDSCs was strongly associated with prolonged survival in ovarian cancer patients. Our results highlight M-MDSCs as the subset with potential the highest clinical significance.
The aim of the present study was to investigate the effect of sorafenib and quercetin on the induction of apoptosis and autophagy in human anaplastic astrocytoma (MOGGCCM) and glioblastoma multiforme (T98G) cell lines. In MOGGCCM cells, sorafenib initiated mainly apoptosis, mediated by the mitochondrial pathway with mitochondrial membrane permeabilization, cytochrome c release to the cytoplasm, and activation of caspase 9 and 3. Additional incubation with quercetin potentiated the pro-apoptotic properties of sorafenib. In T98G cells, autophagy was observed most frequently after the sorafenib treatment. It was accompanied by increased beclin 1 and LC3II expression. Administration of quercetin after the sorafenib treatment resulted in an increased number of autophagic cells. After simultaneous drug application, the level of autophagy was lower in favour of apoptosis. Inhibition of heat shock proteins expression by specific small interfering RNA significantly increased the sensitivity of both the cell lines to induction of apoptosis, but not autophagy. We demonstrated for the first time that sorafenib and quercetin are very effective programmed cell death inducers in T98G and MOGGCCM cells, especially in cells with blocked expression of heat shock proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.