Abstract. We introduce a query language over sensors, streams and relations and formally describe its semantics. Although the language was specifically designed for sensor network querying, where data is pulled into streams, the semantics contributed in the paper also encompasses the case in which data is pushed onto streams or else lies stored in classical relations. The approach taken is that continuous queries over streams are an extension of classical queries over stored extents. Apart from the fact that query evaluation over streams is reactive, or periodic, the main difference is the conception of windows as an additional collection type with the consequent use of type converter operations to and from streams and windows (which, as bounded collections of tuples, can be operated on in a relational-algebraic setting). The language and the semantics we provide for it advance on previous work in being more comprehensive with respect to the collection types allowed and in being more flexible as to the number and content of the windows contributing to the result at each evaluation event of a continuous query. The formalization advances on previous work in clarifying the implementation onus.
A wireless sensor network (WSN) can be construed as an intelligent, largescale device for observing and measuring properties of the physical world. In recent years, the database research community has championed the view that if we construe a WSN as a database (i.e., if a significant aspect of its intelligent behavior is that it can execute declaratively-expressed queries), then one can achieve a significant reduction in the cost of engineering the software that implements a data collection program for the WSN while still achieving, through query optimization, very favorable cost:benefit ratios. This paper describes a query processing framework for WSNs that meets many desiderata associated with the view of WSN as databases. The framework is presented in the form of compiler/optimizer, called SNEE, for a continuous declarative query language over sensed data streams, called SNEEql. SNEEql can be shown to meet the expressiveness requirements of a large class of applications. SNEE can be shown to generate effective and efficient query evaluation plans. More specifically, the paper describes the following contributions: (1) a user-level syntax and physical algebra for SNEEql, an expressive continuous query language over WSNs; (2) example concrete algorithms for physical algebraic operators defined in such a way that the task of deriving memory, time and energy analytical cost-estimation models (CEMs) for them becomes straightforward by reduction to a structural traversal of the pseudocode; (3) CEMs for the concrete algorithms alluded to; (4) an architecture for the optimization of SNEEql queries, called SNEE, building on well-established distributed query processing components where possible, but making enhancements or refinements where necessary to accommodate the WSN context; (5) algorithms that instantiate the components in the SNEE architecture, thereby supporting integrated query planning that includes routing, placement and timing; and (6) an empirical performance evaluation of the resulting framework.
Abstract. We present a sensor network query processing architecture that covers all the query optimization phases that are required to map a declarative query to executable code. The architecture is founded on the view that a sensor network truly is a distributed computing infrastructure, albeit a very constrained one. As such, we address the problem of how to develop a comprehensive optimizer for an expressive declarative continuous query language over acquisitional streams as one of finding extensions to classical distributed query processing techniques that contend with the peculiarities of sensor networks as an environment for distributed computing.
Sensing devices are increasingly being deployed to monitor the physical world around us. One class of application for which sensor data is pertinent is environmental decision support systems, e.g., flood emergency response. For these applications, the sensor readings need to be put in context by integrating them with other sources of data about the surrounding environment. Traditional systems for predicting and detecting floods rely on methods that need significant human resources. In this paper we describe a semantic sensor web architecture for integrating multiple heterogeneous datasets, including live and historic sensor data, databases, and map layers. The architecture provides mechanisms for discovering datasets, defining integrated views over them, continuously receiving data in real-time, and visualising on screen and interacting with the data. Our approach makes extensive use of web service standards for querying and accessing data, and semantic technologies to discover and integrate datasets. We demonstrate the use of our semantic sensor web architecture in the context of a flood response planning web application that uses data from sensor networks monitoring the sea-state around the coast of England.
Abstract. Sensing devices are increasingly being deployed to monitor the physical world around us. One class of application for which sensor data is pertinent is environmental decision support systems, e.g. flood emergency response. However, in order to interpret the readings from the sensors, the data needs to be put in context through correlation with other sensor readings, sensor data histories, and stored data, as well as juxtaposing with maps and forecast models. In this paper we use a flood emergency response planning application to identify requirements for a semantic sensor web. We propose a generic service architecture to satisfy the requirements that uses semantic annotations to support well-informed interactions between the services. We present the SemSorGrid4Env realisation of the architecture and illustrate its capabilities in the context of the example application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.