The successful incorporation of active proteins into synthetic polymers could lead to a new class of materials with functions found only in living systems. However, proteins rarely function under the conditions suitable for polymer processing. On the basis of an analysis of trends in protein sequences and characteristic chemical patterns on protein surfaces, we designed four-monomer random heteropolymers to mimic intrinsically disordered proteins for protein solubilization and stabilization in non-native environments. The heteropolymers, with optimized composition and statistical monomer distribution, enable cell-free synthesis of membrane proteins with proper protein folding for transport and enzyme-containing plastics for toxin bioremediation. Controlling the statistical monomer distribution in a heteropolymer, rather than the specific monomer sequence, affords a new strategy to interface with biological systems for protein-based biomaterials.
Vibrational sum frequency generation (VSFG) spectroscopy and surface pressure measurements are used to investigate the adsorption of a globular protein, bovine serum albumin (BSA), at the air/water interface with and without the presence of salts. We find at low (2 to 5 ppm) protein concentrations, which is relevant to environmental conditions, both VSFG and surface pressure measurements of BSA behave drastically different than at higher concentrations. Instead of emerging to the surface immediately, as observed at 1000 ppm, protein adsorption kinetics is on the order of tens of minutes at lower concentrations. Most importantly, salts strongly enhance the presence of BSA at the interface. This "salting up" effect differs from the well-known "salting out" effect as it occurs at protein concentrations wellbelow where "salting out" occurs. The dependence on salt concentration suggests this effect relates to a large extent electrostatic interactions and volume exclusion. Additionally, results from other proteins and the pH dependence of the kinetics indicate that salting up depends on the flexibility of proteins. This initial report demonstrates "salting up" as a new type of salt-driven interfacial phenomenon, which is worthy of continued investigation given the importance of salts in biological and environmental aqueous systems.
Molecular processes at geochemical interfaces impact many environmental processes that are critical to the fate and transport of contaminants in water systems. Often these interfaces are coated with natural organic matter, oxyanions, or biological components, yet little is understood about these coatings. Herein, we are interested in better understanding the interaction of biological components with nanoscale iron oxide minerals. In particular, we use attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy to investigate the adsorption behavior of deoxyadenosine monophosphate (dAMP) on hematite nanoparticle surfaces as a function of pH and in the presence and absence of adsorbed phosphate. These results show that fewer nucleotides adsorb at higher pH. Additionally, when phosphate anions are preadsorbed, nucleotide adsorption is significantly limited due to site-blocking by adsorbed inorganic phosphate. The pH dependence provides insights into the adsorption process and the importance of electrostatic interactions. Preadsorbed phosphate affects the binding mode of dAMP, suggesting synergistic interactions between the coadsorbates. Two-dimensional correlation spectroscopy was used to further analyze the infrared spectra. Based on this analysis, a dAMP adsorption pathway onto a preadsorbed phosphate–hematite surface was proposed, suggesting the displacement of adsorbed phosphate by dAMP. Overall, this study provides some insights into geochemical–biological interactions on nanoscale iron oxide surfaces using vibrational spectroscopy.
Surface chemistry affects the physiochemical properties of nanoparticles in a variety of ways. Therefore, there is great interest in understanding how nanoparticle surfaces evolve under different environmental conditions of pH and temperature. Here, we discuss the use of vibrational spectroscopy as a tool that allows for in situ observations of oxide nanoparticle surfaces and their evolution due to different surface processes. We highlight oxide nanoparticle surface chemistry, either engineered anthropogenic or naturally occurring geochemical nanoparticles, in complex media, with a focus on the impact of ( a) pH on adsorption, intermolecular interactions, and conformational changes; ( b) surface coatings and coadsorbates on protein adsorption kinetics and protein conformation; ( c) surface adsorption on the temperature dependence of protein structure phase changes; and ( d) the use of two-dimensional correlation spectroscopy to analyze spectroscopic results for complex systems. An outlook of the field and remaining challenges is also presented. Expected final online publication date for the Annual Review of Analytical Chemistry, Volume 14 is June 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.