The competitiveness of seaports is predominantly affected by factors external to the ports themselves, connected mainly with the quality of the hinterland and foreland infrastructure. Measures taken in these areas are reflected in the main objectives of the port strategies. Concurrently, the measures may have adverse environmental impacts (pollutant emissions, noise, land occupancy, etc.) and deteriorate the life quality of the port city’s communities. Therefore, measures taken by seaport authorities to improve their competitiveness must also heed the idea of sustainable development (sustainable port strategy). The answer to this challenge is the idea of green ports, being an element of the corporate social responsibility (CSR) strategies of seaports. One of the elements of this concept is promoting more environmentally friendly transport modes/transport chains in serving the hinterland as an alternative to road transport. Inland shipping is the most environmentally friendly and also cost-competitive mode of transport. Therefore, a modal shift from road to inland waterways is one of the elements of the European Union sustainable transport policy, as well as also gaining importance in the development policies of seaport authorities as an element of a green port strategy. However, this issue has been relatively rarely addressed in the seaport economics literature. In particular, there has been a lack of studies that would make it possible to answer the question of what kind of action should be taken by seaport authorities in order to increase the share of inland shipping in hinterland transport. This article aimed to develop a concept of a promotion policy to be applied by seaport authorities to increase the share of inland shipping in hinterland transport. The study used the elements of a multiple case study design method which included the following seaports: Antwerp, Rotterdam, Hamburg, and the Marseilles–Fos port complex. This article was dedicated to identifying, analyzing, and classifying the policies implemented by these European seaports to promote inland waterway transportation. The research showed that these actions were quite similar in terms of their scope. The actions were classified as external and internal initiatives. The most common external actions included initiatives that improved the quality of inland waterways and the quality of shipping connections with the hinterland. Internal initiatives focused on improving the port’s infrastructure for barges and on implementing an appropriate information policy. The presented concept of a promotion policy can be a road map for all port authorities aiming to improve the quality of inland shipping as a mode of hinterland transport.
This paper focuses on the development of secondary ports in the circular economy model (as a node of circular supply chains) to implement sustainable seaports in the context of the structural changes taking place in the global economy, trade, and maritime transport. The purpose of this article is to identify the opportunities, challenges, and key actions to be taken by secondary ports in circular supply chains. The research method applied was a single case study. The object of the study was the seaport of Szczecin (Poland). Our study showed that the secondary ports lacking technical conditions to serve large vessels, but with available space to develop their transshipment, storage, industrial, distribution, and logistics activities, may become major participants in circular supply chains. Taking advantage of the opportunities associated with participating secondary ports in the circular supply chain requires facing a number of challenges identified in the current literature, such as return-flow uncertainty, transport and infrastructure, the availability of suitable supply chain partners, coordination and information sharing, product traceability, and cultural issues. Our study partially confirms the significance of these challenges for secondary ports. The significance of these challenges depends on the kind of circular supply chain, i.e., whether the supply chain is a producer or a consumer chain. Our study shows that a very important challenge for both types of chains is the problem of internal resistance to change. This still-unsolved issue involves the persistent linear mindset of the port authority, which is manifested mainly as investor evaluation policy based exclusively on the declared annual transshipment volume, which fails to take actions to provide the available land plots with the infrastructure necessary for the terminals and industrial plants that participate in circular supply chains. Simultaneously, for secondary ports, we proved that it is stevedores (who are flexible and fast in adapting to new market conditions, strongly determined to search for new cargo types to replace those that have vanished, and who adapt the scope of their services) who play a key role in stimulating the development of circular supply chains. As a main managerial implication for the authorities of secondary ports, such authorities should create appropriate policies for investor assessments and the utilisation of available areas within the port premises to encourage the enterprises engaged in circular supply chains to invest in and develop their businesses within the port’s premises. It is also necessary to develop appropriate communication between port authorities and their external stakeholders. As a managerial implication for the stevedores in secondary ports, these entities should first develop their service offers to address cargo as part of the circular supply chains (with more comprehensive service offers and added-value services, such as freight forwarding services, stuffing, packing, and mixing of cargo) and develop cooperation with other stakeholders of circular supply chains.
As far as sustainable transport development is concerned, transfer of cargo from road transport to short sea shipping, which, according to the common opinion, generates lower external costs, is one of the objectives of the European Union policy. However, the latest research results indicate that some Ro-Ro vessels and ferries generate higher external costs than road transport. In light of this, benefits resulting from transferring the cargo from road to sea seem to be questionable. The main aim of the article is answering the question whether, and if so, how ferry and Ro-Ro shipping contributes to development of sustainable transport? In order to answer this question, an analysis of ferry and Ro-Ro shipping lines functioning in European transport system has been conducted.The article presents research results based on an analysis of approx. 900 ferry and Ro-Ro shipping lines considering the length and time of voyage compared to alternative road transport. Usually, the course of sea shipping route does not cover the route of the road transport, and therefore the lengths of both routes frequently considerably differ, which significantly affects the total external costs generated by them. On the basis of the analysis, the shipping lines have been classified according to the criterion of their substitutability to road transport and their role in sustainable transport development.
The world-wide crisis caused by the Coronavirus disease 2019 (COVID-19) pandemic had a significant impact on the global economy functioning and the sustainable development of supply chains. The changes also affected seaports being the key links of maritime supply chains. The purpose of the research study described in this article was to identify the sources and kinds of disruptions observed in various maritime supply chains as a result of the COVID-19 pandemic and their impact on the operations of various types of seaport terminals, namely those serving bulk (universal, specialised) and general cargoes (universal, specialised). An additional purpose was to identify the dependencies between the type of terminal and its main function, and the tactical decisions adopted by the particular terminals. The research was carried out using the multiple-case study method. The study covered some selected port terminals functioning in Polish seaports (Gdańsk, Szczecin, Świnoujście), applying direct, semi-structured in-depth interviews. The analysis of the results was carried out using the inductive reasoning method. The research study has shown that as a result of the COVID-19 pandemic some maritime supply chains ceased to exist, some of them were operating with decreased cargo volumes, while in other cases the transshipment volumes actually rose during the pandemic. Among terminal operators’ tactical responses to disruptions in maritime supply chains, there were pro-active and adaptive measures. Pro-active (offensive) measures included actions taken by an enterprise in order to engage in new maritime supply chains, and even participating in establishing new maritime chains in response to limitations caused by the pandemic. Adaptive (defensive) measures covered actions taken by the port terminals as a consequence of changes in the existing maritime supply chains, caused by the pandemic in the port’s foreland or hinterland. The research study results revealed that the terminals extent of engagement and tactical decisions related to the pandemic were depended on the type of terminal (universal or specialised) and its main function played within a supply chain.
One of the tools to attain the goal of climate-neutrality by 2050 by the European Union is increasing the share of renewable energy sources (RESs) in the energy mix of member states. A major part of the future bioenergy mix is to be played by biomass. As many hazards have been pointed out when using forest biomass, particular attention is paid to the potential of agro biomass. However, as agro biomass is sourced mostly locally, the supply may not be sufficient to meet the growing demand. Therefore, international trade (including overseas) might become increasingly important to meet the EU renewable energy targets. In this context, it is seaports that may play a major part in developing biomass supply chains. The main purpose of the article is to fill the research gap by identifying the pros and cons for the development of biomass sea-based supply chains through secondary ports and specifying their relevance from the perspective of major stakeholders in the context of decarbonization processes. The supplementary purpose of the study was the verification of the environmental sustainability of biomass sea-based supply chains through secondary ports versus land transport (carbon footprint). This study applied the single case study method (the case of the secondary port in Szczecin). The case study strategy involved qualitative and quantitative research techniques. Our research study showed that (1) overseas agro biomass (wastes and residues) may become a significant tool in the process of decarbonization of economies that are heavily reliant on coal as a transition fuel and as a stable RES in the structure of the future energy mix; and (2) biomass sea-based supply chains may be an attractive alternative for secondary ports affected by negative outcomes of decarbonization. However, a dedicated biomass terminal would make the secondary ports more attractive for this type of cargo. A biomass terminal may provide sufficient port service efficiency and enable harmonization of deliveries. Additionally, the carbon footprint analysis performed in this study has shown that biomass sea-based supply chains generate lower CO2 emissions than alternative land deliveries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.