Expansive soils may present cracks arising from the drying process and their evolution can cause irreparable damages to engineering projects. Investigating this phenomenon is vital to understanding its geomechanics. The objective of this article is to present numerical modelling of the formation and propagation of cracks in expansive soil. A desiccation experiment was therefore carried out using an expansive silty clay from Paulista, in northeastern Brazil. The drying process was monitored by measuring the temperature and relative humidity of the air, as well as by capturing images with a camera. The digital images were correlated using the Ncorr numerical tool in MATLAB. As a result, this study made it possible to conclude that the soil cracking dynamics presented a non-orthogonal pattern during the dryness test, while the image treatment made it possible to observe the tendency of cracks to appear and propagate on the soil surface, allowing for the detection of crack growth and propagation trends.
The characterization of the structural arrangement of an unsaturated soil is important for the understanding of its behavior. For expansive soils, obtaining this information and combining it with an understanding of their intrinsic and extrinsic properties, makes it possible to predict their performance. The experimental procedure for this study was developed using the expansive soil of the Maria Farinha formation in the city of Paulista, in Pernambuco, Brazil. Physical and chemical characterization tests, edometric tests with wetting, and structural analysis through X-Ray computed tomography were performed for both undisturbed and compacted samples, before and after wetting and swelling. The compaction process was performed without any prior air drying and without loosening, beginning with the field moisture level. Based on its liquid limit and plasticity index, the soil can be classified as CH according to the USCS, moderately acidic, with a swelling potential ranging from high to very high, depending on the initial suction of the sample. The analysis of the soil macro-structure revealed a smaller number of voids in the compacted samples. In addition, it was found that the wetting process caused a reduction of the soil macro pores, in both cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.