Calcium carbonate is an important component in exoskeletons of many organisms. The synthesis of calcium carbonate was performed by mixing dimethyl carbonate and an aqueous solution of calcium chloride dihydrate. The precipitation product was characterized by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) measurements. In addition, the turbidity of the reaction solution was acquired to monitor the kinetics of the calcium carbonate structure’s growth in the investigated system. In this study, samples of CaCO3 particles obtained with individual proteins, such as ovalbumin, lysozyme, and a mixture of the proteins, were characterized and compared with a control sample, i.e., synthesized without proteins. The obtained data indicated that the addition of ovalbumin to the reaction changed the morphology of crystals from rhombohedral to ‘stack-like’ structures. Lysozyme, however, did not affect the morphology of calcium carbonate, yet the presence of the protein mixture led to the creation of more complex composites in which the calcium carbonate crystals were constructed in protein matrices formed by the ovalbumin-lysozyme interaction. It was also observed that in the protein mixture, ovalbumin has a major influence on the CaCO3 formation through a strong interaction with calcium ions, which leads to the coalescence and creation of a steric barrier reducing particle growth. The authors proposed a mechanism of calcium carbonate grain growth in the presence of both proteins, taking into account the interaction of calcium ions with the protein.
Removal of arsenic from water reservoirs is the issue of great concern in many places around the globe. As adsorption is one of the most efficient techniques for treatment of As-containing media, thus the present study concerns application of iron oxides-hydroxides (akaganeite) as adsorbents for removal of this harmful metal from aqueous solution. Two types of akaganeite were tested: synthetic one (A) and the same modified using hexadecyltrimethylammonium bromide (AM). Removal of As was tested in batch studies in function of pH, adsorbent dosage, contact time, and initial arsenic concentration. The adsorption isotherms obey Langmuir mathematical model. Adsorption kinetics complies with pseudo-second-order kinetic model, and the constant rates were defined as 2.07 × 10−3and 0.92 × 10−3 g mg−1 min−1 for the samples (A) and (AM), respectively. The difference was caused by significant decrease in adsorption rate in initial state of the process carried out for the sample AM. The maximum adsorption capacity achieved for (A) and (AM) akaganeite taken from Langmuir isotherm was 148.7 and 170.9 mg g−1, respectively. The results suggest that iron oxides-hydroxides can be used for As removal from aqueous solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.