Today, there is a great deal of emphasis on reducing energy use in buildings for both economic and environmental reasons. Investors strongly encourage the insulating of buildings. Buildings without cooling systems can lead to a deterioration in thermal comfort, even in transitional climate areas. In this article, the effectiveness of natural ventilation in a passive cooling building is analyzed. Two options are considered: cooling with external air supplied to the building by fans, or by opening windows (automatically or by residents). In both cases, fuzzy controllers for the cooling time and supply airflow control are proposed and optimized. The analysis refers to a typical Polish single-family building. Simulations are made with the use of the EnergyPlus program, and the model is validated based on indoor temperature measurement. The calculations were carried out for different climate data: standard and future (warmed) weather data. Research has shown that cooling with external air can effectively improve thermal comfort with a slight increase in heating demand. However, to be able to reach the potential of such a solution, fans should be used.
In this paper currents requirements of HVAC designing (Heating, Ventilation and Air Conditioning) in railway vehicles have been presented. The data were based on railway standards [1, 2]. The aim of this study was to carry out the numerical calculation of airflow combined with heat exchange in a passenger coach. ANSYS CFX 12.1 software was used to carry out the simulation. Two cases of boundary conditions were considered, the first obtained from design calculations common for ordinary buildings and information included in standards and the second only based on the information included in standards. After analysing of the results, it was found that the distribution of air velocity in a coach was similar in both cases, average air velocity was 0.79 m/s. However, the distribution of air temperature was different. For case 1 the average indoor air temperature was 25.07°C and for case 2 was 23.53°C. The method of determining the heat solar gains had a great impact on the results. A further possibility of a model improvement was indicated for example human models will be introduced in coaches, in order to verify the conditions of their thermal comfort, and air recirculation.
In regions with temperate climates, the thermal insulation of buildings is increased to reduce the need for heating. It might significantly reduce human thermal comfort in the summer period. The problem can increase with global warming. The aim of the paper is to analyze the heating and cooling demand, as well as thermal comfort in a single-family house located in Poland for three climate scenarios (typical, real, and future weather data) and for two types of thermal insulation of external walls. In the study, two ways of cooling the building were taken into account: using split air conditioners and using fresh airflow provided through the opening of windows. The open area and the temperatures for opening windows have been optimized using a two-criteria function. The energy simulation was carried out in EnergyPlus 9.4 software. The multi-zone model was validated on the basis of the temperature measurement. The results showed that there will be a problem with ensuring thermal comfort in the future, especially in well-insulated buildings. The energy demand for cooling will be greater than the demand for heating. The use of passive cooling is a good solution for residential buildings in these regions, and the number of discomfort hours is small (max 5%).
Currently, more and more emphasis is being placed on reducing energy consumption in buildings to reduce greenhouse gases in the atmosphere. Building performance simulation is very useful to predict energy demand and indoor environment quality. An indispensable element of the simulation is the validation and calibration of the model, which is an arduous process. The aim of the study was to present a four-level validation (using measurement results) and calibration of a thermal model of a naturally ventilated single-family house. Numerical calculations using co-simulation between EnergyPlus and Contam were performed. The results of the one-year simulation measurements of the indoor temperature and ventilation airflows were compared. After the calibration was performed, a high convergence of the results was found. The normalized mean bias error for hourly and monthly values did not exceed 1% and the coefficient of variation of the root mean squared error was a maximum of 7% with a simultaneous high correlation of the results in the range from 0.85 to 0.89. It was found that the final results were significantly influenced by the appropriate modeling of air exchange in the building, including the opening of windows.
This paper presents the results of numerical simulations of thermal comfort in a passenger coach. The numerical model with people's presence was developed and appropriate boundary conditions were prepared. The ANSYS CFX program was used for the simulations. The calculations were carried out for summer and winter conditions. The predicted mean vote (PMV), predicted percentage dissatisfied (PPD) and draft rate (DR) were calculated to assess the thermal comfort of passengers. The requirements of railway standards in terms of passenger comfort assessment were also verified. Based on the simulation results, it was found that the thermal comfort conditions of the passengers in the coach were not fully satisfactory, especially in summer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.