Despite considerable research effort, the molecular mechanisms of Mycobacterium tuberculosis (Mtb) virulence remain unclear. Cholesterol oxidase (ChoD), an extracellular enzyme capable of converting cholesterol to its 3-keto-4-ene derivative, cholestenone, has been proposed to play a role in the virulence of Mtb. Here, we verified the hypothesis that ChoD is capable of modifying the bactericidal and pro-inflammatory activity of human macrophages. We also sought to determine the contribution of complement receptor 3 (CR3)- and Toll-like receptor 2 (TLR2)-mediated signaling pathways in the development of macrophage responses to Mtb. We found that intracellular replication of an Mtb mutant lacking a functional choD gene (ΔchoD) was less efficient in macrophages than that of the wild-type strain. Blocking CR3 and TLR2 with monoclonal antibodies enhanced survival of ΔchoD inside macrophages. We also showed that, in contrast to wild-type Mtb, the ΔchoD strain induced nitric oxide production in macrophages, an action that depended on the TLR2, but not the CR3, signaling pathway. Both wild-type and mutant strains inhibited the production of reactive oxygen species (ROS), but the ΔchoD strain did so to a significantly lesser extent. Blocking TLR2-mediated signaling abolished the inhibitory effect of wild-type Mtb on ROS production by macrophages. Wild-type Mtb, but not the ΔchoD strain, decreased phorbol myristate acetate-induced phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), which are involved in both TLR2- and CR3-mediated signaling pathways. Our finding also revealed that the production of interleukin 10 by macrophages was significantly lower in ΔchoD-infected macrophages than in wild-type Mtb-infected macrophages. However, tumor necrosis factor-α production by macrophages was the same after infection with mutant or wild-type strains. In summary, we demonstrate here that ChoD is required for Mtb interference with the TLR2-mediated signaling pathway and subsequent intracellular growth and survival of the pathogen in human macrophages.
BackgroundA growing body of evidence suggests that Mycobacterium tuberculosis (Mtb) uses the host’s cholesterol as a source of carbon and energy during infection. Strains defective in cholesterol transport or degradation exhibit attenuated growth in activated macrophages and diminished infectivity in animal models. The aim of this study was to evaluate intracellular replication of a cholesterol degradation-deficient Mtb mutant in human macrophages (MØ) in vitro and assess the functional responses of Mtb mutant-infected MØ.ResultsA mutant Mtb H37Rv strain containing an inactivated kstD gene (∆kstD), which encodes 3-ketosteroid 1(2)-dehydrogenase (KstD), was previously prepared using the homologous recombination-based gene-replacement technique. A control strain carrying the kstD gene complemented with an intact kstD was also previously constructed. In this study, human resting MØ were obtained after overnight differentiation of the human monocyte-macrophage cell line THP-1. Resting MØ were further activated with interferon-γ (IFN-γ). The ability of the kstD-defective Mtb mutant strain to replicate intracellularly in human MØ was evaluated using a colony-forming assay. Nitric oxide (NO) and reactive oxygen species (ROS) production by MØ infected with wild-type or ∆kstD strains was detected using Griess reagent and chemiluminescence methods, respectively. The production of tumor necrosis factor-α and interleukin-10 by MØ after infection with wild-type or mutant Mtb was examined using enzyme-linked immunosorbent assays.We found that replication of mutant Mtb was attenuated in resting MØ compared to the wild-type or complemented strains. Moreover, the mutant was unable to inhibit the NO and ROS production induced through Toll-like receptor 2 (TLR2) signaling in infected resting MØ. In contrast, mutant and wild-type Mtb behaved similarly in MØ activated with IFN-γ before and during infection.ConclusionsThe Mtb mutant ∆kstD strain, which is unable to use cholesterol as a source of carbon and energy, has a limited ability to multiply in resting MØ following infection, reflecting a failure of the ∆kstD strain to inhibit the TLR2-dependent bactericidal activity of resting MØ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.