Primula veris L. and Primula elatior (L.) Hill represent medicinal plants used for the production of herbal teas and preparations with antioxidant and expectorant activity. Flowers and roots of both species possess the same biological activity. In the presented study, raw materials of wild growing P. veris and P. elatior were compared in terms of the content and composition of phenolic compounds using a fast and simple HPLC-DAD method. The study showed that flowers of both species were rich in flavonoids. However, P. veris flowers were characterized with a distinctly higher content of isorhamnetin-3-O-glucoside, astragalin, and (+)-catechin, whereas P. elatior occurred to be a richer source of rutoside and isorhamnetin-3-O-rutinoside. Hyperoside was found exclusively in P. elatior flowers. Phenolic glycosides (primverin and primulaverin) were identified only in the roots. Their content was about ten times higher in P. veris in comparison with P. elatior underground organs. The obtained results clearly show that both Primula species differ distinctly in terms of the content and composition of phenolic compounds. The compounds differentiating both species to the highest degree (hyperoside, in flowers, as well as primverin and primulaverin, in the roots) may be useful chemical markers in the identification and evaluation of both species.
The aim of the study was to assess the effects of Melittis melissophyllum shading on its development and accumulation of phenolics. Their content (verbascoside, apiin, luteolin-7-O-glucoside, coumarin, 3,4-dihydroxycoumarin, o-coumaric acid 2-O-glucoside as well as o-coumaric, p-coumaric, chlorogenic, caffeic, ferulic and cichoric acid) was determined in the herb using HPLC-DAD. The results showed that the content of abovementioned flavonoids and phenolic acids was highest in plants grown under full sunlight. On the other hand, a higher content of coumarin was observed in shaded plants, especially after the seed-setting stage. A similar tendency was noted for the amount of chlorophyll a and b. The content of hydrogen peroxide and malondialdehyde, the activity of polyphenol oxidase and catalase and the antioxidant capacity of plant extracts (measured using DPPH, ABTS and FRAP assays) were found to be the highest in the plants grown in full sunlight. However, the plants grown in moderate (30%) shade were found to thrive best.
The phytochemical diversity of Melittis melissophyllum was investigated in terms of seasonal changes and age of plants including plant organs diversity. The content of phenolics, namely: coumarin; 3,4-dihydroxycoumarin; o-coumaric acid 2-O-glucoside; verbascoside; apiin; luteolin-7-O-glucoside; and o-coumaric; p-coumaric; chlorogenic; caffeic; ferulic; cichoric acids, was determined using HPLC-DAD. Among these, luteolin-7-O-glucoside, verbascoside, chlorogenic acid, and coumarin were the dominants. The highest content of flavonoids and phenolic acids was observed in 2-year-old plants, while coumarin in 4-year-old plants (272.06 mg 100 g–1 DW). When considering seasonal changes, the highest content of luteolin-7-O-glucoside was observed at the full flowering, whereas verbascoside and chlorogenic acid were observed at the seed-setting stage. Among plant organs, the content of coumarin and phenolic acids was the highest in leaves, whereas verbascoside and luteolin-7-O-glucoside were observed in flowers. The composition of essential oil was determined using GC-MS/GC-FID. In the essential oil from leaves, the dominant was 1-octen-3-ol, whilst from flowers, the dominant was α-pinene.
Summary An efficient method for in vitro propagation of bastard balm by enhanced axillary shoot branching has been developed. The material to establish in vitro culture was shoot tips collected from three-year-old plants in May. The shoots obtained from initial explants were placed on MS/B5 medium containing 0.1, 0.5 or 1.0 mg/l BA with 0.01 mg/l NAA or without the auxin. The highest number of shoots per explant was obtained on the medium with 1.0 mg/l BA (3.9 shoots per explant). For the rooting of shoots ½ MS/B5 with IBA (0.25, 0.50 and 1.0 mg/l) medium was used. The medium without plant growth regulators served as a control. The best root regeneration was observed on the medium without IBA (87.1% of cuttings rooted). IBA used in the medium for shoot rooting affected the morphological traits of obtained microcuttings but not affected their weight. Irrespective of auxin concentration in this medium, obtained microcuttings acclimated in ex vitro conditions very well.
SummaryIntroduction: Bastard balm grows in forests, in central and southeastern part of Europe. The herb of this species is rich in phenolics, mainly flavonoids, phenolic acids and coumarins. The plant is used in traditional European medicine, in digestive problems and for aromatizing tobacco and alcohol products.Objective: The purpose of this study was to determine the influence of shading on bastard balm development and the accumulation of phenolics in its herb, with special respect to coumarin as a quality marker of this raw material.Methods: The plants were cultivated in full sunlight, in 30% and 50% shade provided by shading nets. The herb was harvested from plants in the third year of vegetation, at four subsequent developmental stages and then subjected to chemical evaluation. In the raw material, the total contents of flavonoids, phenolic acids and coumarins was determined. The content of coumarin was analyzed using HPLC-DAD.Results: Plants grown in 30% shade produced the highest number of flowers and seeds. They produced the highest mass of herb at the beginning of the seed-setting stage. The plants grown in full sunlight revealed the highest content of flavonoids and phenolic acids, especially during flowering and at the beginning of the seed-setting stage. The mass of herb obtained by plants cultivated at deep (50%) shade was the lowest, however, the content of coumarin in these plants was the highest.Conclusion: The influence of shade on bastard balm was expressed by the herb mass and coumarin content increment. The plants thrived best in 30% shade, both in terms of flowering abundance and the mass of herb, whereas those from 50% shade were the richest in coumarin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.