Despite significant advances in the prevention and treatment of heart failure (HF), the prognosis in patients who have been hospitalised on at least one occasion due to exacerbation of HF is still poor. Therefore, a better understanding of the underlying pathophysiological mechanisms of HF is crucial in order to achieve better results in the treatment of this clinical syndrome. One of the areas that, for years, has aroused the interest of researchers is the activation of the immune system and the elevated levels of biomarkers of inflammation in patients with both ischaemic and non-ischaemic HF. Additionally, it is intriguing that the level of circulating pro-inflammatory biomarkers correlates with the severity of the disease and prognosis in this group of patients. Unfortunately, clinical trials aimed at assessing interventions to modulate the inflammatory response in HF have been disappointing, and the modulation of the inflammatory response has had either no effect or even a negative effect on the HF prognosis. The article presents a summary of current knowledge on the role of immune system activation and inflammation in the pathogenesis of HF. Understanding the immunological mechanisms pathogenetically associated with left ventricular remodelling and progression of HF may open up new therapeutic possibilities for HF.
Diabetes is a key independent risk factor in the development of heart failure (HF) and a strong, adverse prognostic factor in HF patients. HF remains the primary cause of hospitalisation for diabetics and, as previous studies have shown, when HF occurs in these patients, intensive glycaemic control does not directly improve the prognosis. Recent clinical studies assessing a new class of antidiabetic drugs, sodium-glucose cotransporter 2 inhibitors (SGLT2is) showed some unexpected beneficial results. Patients treated with SGLT2is had a significant decrease in both cardiovascular (CV) and all-cause mortality and less hospitalisations due to HF compared to those given a placebo. These significant clinical benefits occurred quickly after the drugs were administered and were not solely due to improved glycaemic control. These groundbreaking clinical trials’ results have already changed clinical practice in the management of patients with diabetes at high CV risk. These trials have triggered numerous experimental studies aimed at explaining the mechanisms of action of this unique group of drugs. This article presents the current state of knowledge about the mechanisms of action of SGLT2is developed for the treatment of diabetes and which, thanks to their cardioprotective effects, may, in the future, become a treatment for patients with HF.
Purpose: Innovative biomedical filaments for 3D printing in the form of short and biodegradable composite sticks modified with various additives were used to prepare biomaterials for further nasal implants. As the respiratory tract is considered to be potentially exposed to contamination during the implantation procedure there is a need to modify the implant with an antibacterial additives. The purpose of this work was to analyze the effect of biodegradable polymer – polycaprolactone (PCL) modification with various additives on its antibacterial properties. Methods: PCL filament modified with graphene (0.5, 5, 10% wt.), bioglass (0.4% wt.) and zinc-doped bioglass (0.4% wt.) were used to print spatial biomaterials using FDM 3D printer. Pure polymer biomaterials without additives were used as reference samples. The key task was to assess the antimicrobial impact of the prepared biomaterials against the following microorganisms: Staphylococcus aureus ATCC 25293, Escherichia coli ATCC 25922, Candida albicans ATCC 10231. Results: The research results point to a significant antibacterial efficacy of the tested materials against S. aureus and C. albicans, which, however, seems to decrease with increasing graphene content in the filaments. A complete lack of antibacterial efficacy against E. coli was determined. Conclusions: The tested biomaterials have important antibacterial properties, especially against C. albicans. The obtained results showed that biomaterials made of modified filaments can be successfully used in implantology, where a need to create temporary tissue scaffolds occurs.
Structural changes within the placenta are observed in the course of pathological pregnancy. The aim of the study was to perform initial assessment of morphological features of placenta. The analysis was conducted by Scanning Electron Microscopy. Samples of placenta of women who delivered neonates appropriate for gestational age were characterized by a homogenous surface texture with natural corrugation. The surface of IUGR placenta from the group of mothers with pregnancy induced hypertension was definitely heterogeneous - noticeable swelling of tissue surface was observed. Samples from LGA group also demonstrated a number of surface bulges and heterogeneities which were, nonetheless, characterized by a certain repeatability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.