In this study, we investigated the effect of adding two different intermetallics, Ti5Si3 and TiSi2, for the preparation of TiB2-SiC-B4C composites. As part of the research, stoichiometric composites consisting only of two phases TiB2 and SiC were obtained. The TiB2-SiC-B4C composites were prepared via pressureless sintering. The presence of the phases in the sintered composites was confirmed using X-ray diffraction and scanning electron microscopy. The SEM-EDS examination revealed that the TiB2 and SiC phases were formed during the composite process synthesis and were distributed homogeneously in the B4C matrix. The obtained results allowed us to usually exceed 2000 °C and the use of specialized equipment for firing, that is, vacuum or protective atmosphere furnaces as well as control and measurement equipment. Such an approach generates high costs that are decisive for the economics of the technological processes. In the case of our compositions, it is possible to lower the temperature to 1650 °C. The TiB2-SiC-B4C composites were classified as UHTCs.
Composites based on boron carbide (B 4 C) have drawn attention due to their outstanding physical and chemical properties. Herein, the effect of adding boron, titanium, and both titanium and boron, on the B 4 C-based material, is investigated. In addition, the additives' influence on the temperature of composite synthesis and the whole sintering process is evaluated. The Ti-B 4 C composites are prepared by two different methods: pressureless sintering and hot pressing. The presence of Ti, B, and C as dominant additives in the sintered composites is confirmed by X-ray diffraction and scanning electron microscopy (SEM). The SEM examination reveals that TiB 2 particles formed during the composite process synthesis are distributed homogeneously in the B 4 C matrix. Mechanical properties, such as hardness, Young's modulus, and fracture toughness are tested, along with the composites' density and porosity. All the sintered samples, regardless of the incorporated additives, are characterized by high mechanical properties, reaching outstanding values in a few cases. The obtained results allow us to state that the usage of a boron and titanium mixture significantly improves the sintering process of composites due to the reactive sintering phenomenon occurring during the composites' preparation. The Ti-B 4 C composites are classified as ultrahigh-temperature ceramics materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.