Currently 30 human ABC proteins are represented by full sequences in various databases, and this paper provides a brief overview of these proteins. ABC proteins are composed of transmembrane domains (TMDs), and nucleotide binding domains (NBDs, or ATP-binding cassettes, ABSs). The arrangement of these domains, together with available membrane topology models of the family members, are presented. Based on their sequence similarity scores, the members of the human ABC protein family can be grouped into eight subfamilies. At present the MDR/TAP, the ALD, the MRP/CFTR, the ABC1, the White, the RNAseL inhibitor, the ANSA, and the GCN20 subfamilies are identified. Mutations of many human ABC proteins are known to be causative in inherited diseases, and a short description of the molecular pathology of these ABC gene-related genetic diseases is also provided.
OBJECTIVETemperature and nutrient homeostasis are two interdependent components of energy balance regulated by distinct sets of hypothalamic neurons. The objective is to examine the role of the metabolic signal insulin in the control of core body temperature (CBT).RESEARCH DESIGN AND METHODSThe effect of preoptic area administration of insulin on CBT in mice was measured by radiotelemetry and respiratory exchange ratio. In vivo 2-[18F]fluoro-2-deoxyglucose uptake into brown adipose tissue (BAT) was measured in rats after insulin treatment by positron emission tomography combined with X-ray computed tomography imaging. Insulin receptor–positive neurons were identified by retrograde tracing from the raphe pallidus. Insulin was locally applied on hypothalamic slices to determine the direct effects of insulin on intrinsically warm-sensitive neurons by inducing hyperpolarization and reducing firing rates.RESULTSInjection of insulin into the preoptic area of the hypothalamus induced a specific and dose-dependent elevation of CBT mediated by stimulation of BAT thermogenesis as shown by imaging and respiratory ratio measurements. Retrograde tracing indicates that insulin receptor–expressing warm-sensitive neurons activate BAT through projection via the raphe pallidus. Insulin applied on hypothalamic slices acted directly on intrinsically warm-sensitive neurons by inducing hyperpolarization and reducing firing rates. The hyperthermic effects of insulin were blocked by pretreatment with antibodies to insulin or with a phosphatidylinositol 3–kinase inhibitor.CONCLUSIONSOur findings demonstrate that insulin can directly modulate hypothalamic neurons that regulate thermogenesis and CBT and indicate that insulin plays an important role in coupling metabolism and thermoregulation at the level of anterior hypothalamus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.