In recent decades, populations of the raccoon (Procyon lotor) and the raccoon dog (Nyctereutes procyonides) have increased and adapted to peri-urban and urban environments in many parts of the world. Their ability to rapidly colonize new territories, high plasticity and behavioral adaptation has enabled these two species to be considered two of the most successful invasive alien species. One of the major threats arising from continually growing and expanding populations is their relevant role in maintaining and transmitting various vector-borne pathogens among wildlife, domestic animals and humans. According to the WHO, over 17% of infectious diseases are vector-borne diseases, including those transmitted by ticks. Every year tick-borne pathogens (TBPs) create new public health challenges. Some of the emerging diseases, such as Lyme borreliosis, anaplasmosis, ehrlichiosis, babesiosis and rickettsiosis, have been described in recent years as posing important threats to global health. In this review we summarize current molecular and serological data on the occurrence, diversity and prevalence of some of the TBPs, namely Babesia, Theileria, Hepatozoon, Borrelia, Rickettsia, Bartonella, Anaplasma and Ehrlichia, that have been detected in raccoons and raccoon dogs that inhabit their native habitats and introduced areas. We draw attention to the limited data currently available on these invasive carnivores as potential reservoirs of TBPs in different parts of the world. Simultaneously we indicate the need for more research in order to better understand the epidemiology of these TBPs and to assess the future risk originating from wildlife. Graphical Abstract
Background The raccoon Procyon lotor (Linnaeus, 1758) (Carnivora; Procyonidae) is one of the most important and most intensively studied invasive mammal species in Europe. Within the last 30 years the raccoon has spread at an increasing rate, resulting in the establishment of local populations in various regions of Europe. In these newly colonised areas, gaps in knowledge of the raccoon’s biology concern not only most aspects of its ecology in a broad sense, but also its pathogens and parasites. Most micropathogens recorded hitherto in the raccoons that have colonised Europe have documented epizootic and zoonotic potential. Thus, it is considered especially important to investigate the role played by the raccoon in the spread of pathogens through both animal-animal and animal-human pathways. Methods Tissue samples of raccoons from Poland and Germany were examined in this study. In total, 384 tissue samples from 220 raccoons (170 spleen samples, 82 liver biopsies, 132 ear biopsies) were examined using molecular methods. The presence of Rickettsia spp. DNA was screened through amplification of a fragment of the gltA gene. Samples that were PCR positive for gltA were tested for other rickettsial genes, ompB and a 17-kDa antigen. For taxonomic purposes, the obtained sequences were compared with corresponding sequences deposited in GenBank using the Basic Local Alignment Search Tool, and phylogenetic analyses were conducted using Bayesian inference implemented in MrBayes software. Results Rickettsia DNA was confirmed only in skin biopsies; no isolates from the spleen or liver were positive for Rickettsia DNA. With the exception of one sample from Germany, which was positive for Rickettsia helvetica DNA, all the samples positive for Rickettsia DNA derived from the Polish population of raccoons. DNA of Rickettsia spp. was detected in 25 samples, i.e. 11.4% of the tested raccoons, and R. helvetica was confirmed in 52% of the positive samples. Additionally, single cases of Rickettsia monacensis, Rickettsia raoultii, and Candidatus Rickettsia kotlanii-like were found, and in 32% of all the positive samples similarity was shown to different Rickettsia endosymbionts. Out of the samples that tested positive for gltA, amplicons of ompB and 17 kDa were successfully sequenced from 14 and three samples, respectively. Conclusions To the best of our knowledge, this study provides, for the first time, evidence of the occurrence of Rickettsia pathogens and endosymbionts in the European population of raccoons. Further, broader research on different species of wild vertebrates, and ticks, as potential vectors and hosts for tick-borne pathogens, in natural as well as in peri-urban environments, is therefore required. Graphical abstract
Dirofilaria repens is an expanding vector-borne zoonotic parasite of canines and other carnivores. Sub-clinically infected dogs constitute the most important reservoir of the parasite and the source of infection for its mosquito vectors. However, occurrence of D. repens infection in wild animals may contribute to the transmission of the parasite to humans and may explain the endemicity of filariae in newly invaded regions. The aim of the current study was to determine the occurrence of D. repens in 511 blood and spleen samples from seven species of wild carnivores (wolves, red foxes, Eurasian badgers, raccoons, raccoon dogs, stone martens, and pine martens) from different regions of Poland by means of a PCR protocol targeting the 12S rDNA gene. Dirofilaria repens–positive hosts were identified in seven of fourteen voivodeships in four of the seven regions of Poland: Masovia, Lesser Poland, Pomerania and Warmia-Masuria. The highest prevalence was found in Masovia region (8%), coinciding with the highest previously recorded prevalence in dogs in Central Poland. The DNA of Dirofilaria was detected in 16 samples of three species (total prevalence 3.13%). A low and similar percentage of positive samples (1.9%, 4.2% and 4.8%) was recorded among badgers, red foxes, and wolves, respectively. Dirofilaria repens–positive hosts were identified in seven of fourteen voivodships. Based on detection in different voivodeships, D. repens–positive animals were recorded in four out of the seven regions of Poland: in Masovia, Lesser Poland, Pomerania, and Warmia-Masuria. The highest prevalence of filariae was found in Masovia region (8%), reflecting the highest previously recorded prevalence in dogs (12–50%) in Central Poland. In summary, we conducted the first comprehensive study on the epidemiology of D. repens in seven species of wild hosts in all seven regions of Poland and identified the first case of D. repens infection in Eurasian badgers in Poland and the second in Europe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.