Trypsin inhibitors are studied in a variety of models for their anti-obesity and anti-inflammatory bioactive properties. Our group has previously demonstrated the satietogenic effect of tamarind seed trypsin inhibitors (TTI) in eutrophic mouse models and anti-inflammatory effects of other trypsin inhibitors. In this study, we evaluated TTI effect upon satiety, biochemical and inflammatory parameters in an experimental model of metabolic syndrome (MetS). Three groups of n = 5 male Wistar rats with obesity-based MetS received for 10 days one of the following: (1) Cafeteria diet; (2) Cafeteria diet + TTI (25 mg/kg); and (3) Standard diet. TTI reduced food intake in animals with MetS. Nevertheless, weight gain was not different between studied groups. Dyslipidemia parameters were not different with the use of TTI, only the group receiving standard diet showed lower very low density lipoprotein (VLDL) and triglycerides (TG) (Kruskal–Wallis, p < 0.05). Interleukin-6 (IL-6) production did not differ between groups. Interestingly, tumor necrosis factor-alpha (TNF-α) was lower in animals receiving TTI. Our results corroborate the satietogenic effect of TTI in a MetS model. Furthermore, we showed that TTI added to a cafeteria diet may decrease inflammation regardless of weight loss. This puts TTI as a candidate for studies to test its effectiveness as an adjuvant in MetS treatment.
Objective: This study evaluated the effect of a protein, the isolated Trypsin Inhibitor (TTI) from Tamarindus indica L. seed, as a CCK secretagogue and its action upon food intake and leptin in obese Wistar rats. Methods: Three groups of obese rats were fed 10 days one of the following diets: Standard diet (Labina®) + water; High Glycemic Index and Load (HGLI) diet + water or HGLI diet + TTI. Lean animals were fed the standard diet for the 10 days. Food intake, zoometric measurements, plasma CCK, plasma leptin, relative mRNA expression of intestinal CCK-related genes, and expression of the ob gene in subcutaneous adipose tissue were assessed. Results: TTI decreased food intake but did not increase plasma CCK in obese animals. On the other hand, TTI treatment decreased CCK-1R gene expression in obese animals compared with the obese group with no treatment (p = 0.027). Obese animals treated with TTI presented lower plasma leptin than the non-treated obese animals. Conclusion: We suggest that TTI by decreasing plasma leptin may improve CCK action, regardless of its increase in plasma from obese rats, since food intake was lowest.
: The increasing prevalence of obesity and, consequently, chronic inflammation and its complications has increased the search for new treatment methods. The effect of the purified tamarind seed trypsin inhibitor (TTIp) on metabolic alterations in Wistar rats with obesity and dyslipidemia was evaluated. Three groups of animals with obesity and dyslipidemia were formed, consuming a high glycemic index and glycemic load (HGLI) diet, for 10 days: Obese/HGLI diet; Obese/standard diet; Obese/HGLI diet + TTIp (730 μg/kg); and one eutrophic group of animals was fed a standard diet. Rats were evaluated daily for food intake and weight gain. On the 11th day, animals were anesthetized and sacrificed for blood and visceral adipose tissue collection. TTIp treated animals presented significantly lower food intake than the untreated group (p = 0.0065), TG (76.20 ± 18.73 mg/dL) and VLDL-C (15.24 ± 3.75 mg/dL). Plasma concentrations and TNF-α mRNA expression in visceral adipose tissue also decreased in obese animals treated with TTIp (p < 0.05 and p = 0.025, respectively) with a negative immunostaining. We conclude that TTIp presented anti-TNF-α activity and an improved lipid profile of Wistar rats with dyslipidemia and obesity induced by a high glycemic index and load diet regardless of PPAR-γ induction.
Type 2 diabetes mellitus (T2DM) is characterized by hyperglycemia. Proteins in plant sources that enable the maintenance of the glycemic profile may be of interest in the context of T2DM. However, their mechanisms of action are unclear, unlike other bioactive compounds. This systematic review identified and described the mechanisms of action of isolated and purified proteins and peptides extracted from vegetables on the reduction of blood glucose in T2DM in experimental studies. The research was done in PubMed, ScienceDirect, Scopus, Web of Science, Embase and Virtual Health Library (VHL) databases in March 2019. The initial search retrieved 916 articles, and, after reading the title, abstract and keywords, 24 articles were eligible for full reading. Then, five articles were eligible to build this systematic review. The evaluation of the evidence and the strength of the recommendations of the studies was evaluated with the SYstematic Review Center for Laboratory animal Experimentation-SYRCLE. Studies with proteins or peptides extracted from soybean (Glycine max), corn (Zea mays), peas (Pisum sativum), costus (Costus igneus) and ginseng (Panax ginseng) were found, and all of them decreased glycemia but not by the same mechanisms. The mechanism of action of proteins extracted from Glycine max, Pisum sativum, Costus igneus were similar, acting in the insulin-mediated pathways. The peptide derived from Zea mays increased GLP-1 expression, and the peptide from Panax ginseng reduced NF-kB signaling, both resulting in stimulating the release of insulin. Therefore, bioactive proteins and peptides of plant sources act through biochemical pathways, in the modulation of insulin resistance and the hyperglycemic state. These compounds are promising in scientific research on T2DM, because there is a probable similarity of these proteins with insulin, which enables them to act as insulin-like molecules.
Several studies have sought new therapies for obesity and liver diseases. This study investigated the effect of the trypsin inhibitor isolated from tamarind seeds (TTI), nanoencapsulated in chitosan and whey protein isolate (ECW), on the liver health status of the Wistar rats fed with a high glycemic index (HGLI) diet. The nanoformulations without TTI (CW) and ECW were obtained by nanoprecipitation technique, physically and chemically characterized, and then administered to the animals. The adult male Wistar rats (n = 20) were allocated to four groups: HGLI diet + water; standard diet + water; HGLI diet + ECW (12.5 mg/kg); and HGLI diet + CW (10.0 mg/kg), 1 mL per gagave, for ten days. They were evaluated using biochemical and hematological parameters, Fibrosis-4 Index for Liver Fibrosis (FIB-4), AST to Platelet Ratio Index (APRI) scores, and liver morphology. Both nanoparticles presented spherical shape, smooth surface, and nanometric size [120.7 nm (ECW) and 136.4 nm (CW)]. In animals, ECW reduced (p < 0.05) blood glucose (17%), glutamic oxalacetic transaminase (39%), and alkaline phosphatase (24%). Besides, ECW reduced (p < 0.05) APRI and FIB-4 scores and presented a better aspect of hepatic morphology. ECW promoted benefits over a liver injury caused by the HGLI diet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.