The development of new methodologies for gaining access to low-valent molybdenum complexes led to spectroscopic identification of mononuclear (oxo)molybdenum(IV) corroles, as well as the full characterization of a binuclear molybdenum(IV) corrole that is bridged through axial O atoms by a Mg(THF)4 moiety.
The synthesis and full characterization of the first tungsten corrole reveal that it is a binuclear trioxo-bridged complex of tungsten(VI), a coordination motif without precedence for tungsten chelated by other ligands.
Summary
Stable complexes with terminal triply bound metal-oxygen bonds are usually not considered as valuable catalysts for the hydrogen evolution reaction (HER). We now report the preparation of three conceptually different (oxo)molybdenum(V) corroles for testing if proton-assisted 2-electron reduction will lead to hyper-reactive molybdenum(III) capable of converting protons to hydrogen gas. The upto 670 mV differences in the [(oxo)Mo(IV)]
-
/[(oxo)Mo(III)]
−2
redox potentials of the dissolved complexes came into effect by the catalytic onset potential for proton reduction thereby, significantly earlier than their reduction process in the absence of acids, but the two more promising complexes were not stable at practical conditions. Under heterogeneous conditions, the smallest and most electron-withdrawing catalyst did excel by all relevant criteria, including a 97% Faradaic efficiency for catalyzing HER from acidic water. This suggests complexes based on molybdenum, the only sustainable heavy transition metal, as catalysts for other yet unexplored green-energy-relevant processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.