Studies of protein dynamics at low temperatures are generally performed on hydrated powders and not in biologically realistic solutions of water because of water crystallization. However, here we avoid the problem of crystallization by reducing the size of the biomolecules. We have studied oligomers of the amino acid l-lysine, fully dissolved in water, and our dielectric relaxation data show that the glass transition-related dynamics of the oligomers is determined by the water dynamics, in a way similar to that previously observed for solvated proteins. This implies that the crucial role of water for protein dynamics can be extended to other types of macromolecular systems, where water is also able to determine their conformational fluctuations. Using the energy landscape picture of macromolecules, the thermodynamic criterion for such solvent-slaved macromolecular motions may be that the macromolecules need the entropy contribution from the solvent to overcome the enthalpy barriers between different conformational substates.
We combine broadband dielectric spectroscopy (BDS) with 1 H and 2 H nuclear magnetic resonance (NMR) to study molecular dynamics in mixtures of ε-polylysine with H 2 O or D 2 O. In BDS, four relaxation processes can be attributed to molecular dynamics. While the fastest process P1 obeys the Arrhenius law, the slowest process P4 shows prominent non-Arrhenius behavior typical of structural α relaxation. For the intermediate processes P2 and P3, the temperature dependence changes at the glass transition temperature Tg. The 1 H and 2 H NMR results yield insights into the molecular origins of these relaxation phenomena. In these NMR analyses, we exploit, in addition to the isotope selectivity of the method, the possibility to distinguish between various types of motion based on their respective line-shape effects and the capability to single out specific molecular moieties based on different spin-lattice relaxation behaviors. In this way, we reveal that process P1 results from the rotation of side and end groups of the peptide, while process P2 is caused by a reorientation of essentially all water molecules, which are quasi-isotropic and survive well below Tg. As for the peptide backbone dynamics, we find evidence that rotational motion of polar groups is involved in process P3 and that nonpolar regions show a dynamical process, which is located between P3 and P4. Thus, the NMR analyses do not yield evidence for coexisting fast peptide-decoupled and slow peptide-coupled water species, which contribute to BDS processes P2 and P3, respectively, but minor bimodality of water motion may remain undetected. Finally, it is demonstrated that the proton/deuteron exchange needs to be considered when interpreting experimental results for molecular dynamics in aqueous peptide solutions.
Antiplasticizing effect of hydration vs. plasticizing effect of nanoconfinement in a molecular glass former.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.