Basal stem rot disease (BSR) in oil palm plants is caused by the Ganoderma boninense (G. boninense) fungus. BSR is a major disease that affects oil palm plantations in Malaysia and Indonesia. As of now, the only available sustaining measure is to prolong the life of oil palm trees since there has been no effective treatment for the BSR disease. This project used an ALOS PALSAR-2 image with dual polarization, Horizontal transmit and Horizontal receive (HH) and Horizontal transmit and Vertical receive (HV). The aims of this study were to (1) identify the potential backscatter variables; and (2) examine the performance of machine learning (ML) classifiers (Multilayer Perceptron (MLP) and Random Forest (RF) to classify oil palm trees that are non-infected and infected by G. boninense. The sample size consisted of 55 uninfected trees and 37 infected trees. We used the imbalance data approach (Synthetic Minority Over-Sampling Technique (SMOTE) in these classifications due to the differing sample sizes. The result showed backscatter variable HV had a higher correct classification for the G. boninense non-infected and infected oil palm trees for both classifiers; the MLP classifier model had a robust success rate, which correctly classified 100% for non-infected and 91.30% for infected G. boninense, and RF had a robust success rate, which correctly classified 94.11% for non-infected and 91.30% for infected G. boninense. In terms of model performance using the most significant variables, HV, the MLP model had a balanced accuracy (BCR) of 95.65% compared to 92.70% for the RF model. Comparison between the MLP model and RF model for the receiver operating characteristics (ROC) curve region, (AUC) gave a value of 0.92 and 0.95, respectively, for the MLP and RF models. Therefore, it can be concluded by using only the HV polarization, that both the MLP and RF can be used to predict BSR disease with a relatively high accuracy.
Basal stem rot (BSR) disease occurs due to the most aggressive and threatening fungal attack of the oil palm plant known as Ganoderma boninense (G. boninense). BSR is a disease that has a significant impact on oil palm crops in Malaysia and Indonesia. Currently, the only sustainable strategy available is to extend the life of oil palm trees, as there is no effective treatment for BSR disease. This study used thermal imagery to identify the thermal features to classify non-infected and BSR-infected trees. The aims of this study were to (1) identify the potential temperature features and (2) examine the performance of machine learning (ML) classifiers (naïve Bayes (NB), multilayer perceptron (MLP), and random forest (RF) to classify oil palm trees that are non-infected and BSR-infected. The sample size consisted of 55 uninfected trees and 37 infected trees. We used the imbalance data approaches such as random undersampling (RUS), random oversampling (ROS) and synthetic minority oversampling (SMOTE) in these classifications due to the different sample sizes. The study found that the Tmax feature is the most beneficial temperature characteristic for classifying non-infected or infected BSR trees. Meanwhile, the ROS approach improves the curve region (AUC) and PRC results compared to a single approach. The result showed that the temperature feature Tmax and combination feature TmaxTmin had a higher correct classification for the G. boninense non-infected and infected oil palm trees for the ROS-RF and had a robust success rate, classifying correctly 87.10% for non-infected and 100% for infected by G. boninense. In terms of model performance using the most significant variables, Tmax, the ROS-RF model had an excellent receiver operating characteristics (ROC) curve region (AUC) of 0.921, and the precision–recall curve (PRC) region gave a value of 0.902. Therefore, it can be concluded that the ROS-RF, using the Tmax, can be used to predict BSR disease with relatively high accuracy.
The effects of plant diseases on agricultural production worldwide contribute to significant economic and post-harvest losses. To maintain the sustainability of the farming sector, the early detection of plant and pathogens is essential. Non - destructive methods for tracking the health conditions of plants in real-time applications are among the most realistic and feasible in this regard. Owing to non - destructive methods and non - contact measuring devices, thermal imaging advancement has become an essential technique in all fields. Thermal imaging operates by emitting infrared irradiation in all materials. The method, therefore, uses radiation to create an image of the thermal distribution of the body surface. This approach is useful for all areas where the difference in temperature helps in the area/object analyses. Therefore, this paper briefly explores the potential for thermal imaging to be used to detect plant disease in the control area and the field.
The management of Islamic cemeteries is a social requirement that needs to be implemented in Malaysia community especially among Muslims. The cemetery management system is particularly inadequate because of the current rapid development and a high number of deaths in specific urban areas. This circumstance has produced several concerns, including the lack of an orderly death record and the non-uniform arrangement of grave sites, all of which contribute to the lack of a cemetery. Therefore, the emerging demands in creating the Muslim cemetery management system are highly significant. The Muslim Graveyard Management System (MGMS) was created using a combination of Geographical Information System (GIS), aerial imagery and the used of Survey123 Mobile Apps technologies. This study focuses on the development of GIS and web-based systems to assist authorities in managing funeral records more effectively. The study was also conducted to assist the deceased's heirs in identifying the location of their family graves. This system is well equipped with a search function that can provide information of the deceased by using an Internet browser. In addition, the use of quick response code (QR code) in this IGMS system allows various types of information to be directly accessible and easily generated with fast-reading accuracy. Consequently, this study has foreseen the practicality and potential of this MGMS system through a conducted case study at the Islamic cemetery,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.