A positive parenting style affects psychological and cognitive development in children. Neuroimaging studies revealed that a positive parenting style influenced brain structure in children. Parental praise is a concrete behavior observed in positive parenting. Although previous psychological studies revealed a positive effect of parental praise on children, little is known about the relationship between parental praise and brain structure in children. Thus, the purpose of the present study was to determine whether there was a correlation between the parental attitude towards praising their child and gray matter volume in the children (116 boys and 109 girls; mean age, 10.6 years old). We examined the correlation between regional gray matter volume and parental praise using voxel-based morphometry (VBM) following magnetic resonance imaging (MRI). In addition, to confirm the positive effects of parental praise, we analyzed the correlation between the frequency of parental praise and personality traits in children. We showed that the parental attitude towards praising their child was significantly and positively correlated with the gray matter volume of the left posterior insular cortex in children. Moreover, we found a significant positive correlation between parental attitude towards praising their child and the personality traits of conscientiousness and openness to experience in the children. Prior studies said that gray matter volume in the posterior insula was correlated with empathy, and the functional connectivity between this area and the amygdala was associated with emotional regulation. Furthermore, the posterior insula relates to auditory function, and therefore, was likely involved in the processing of parental praise. Considering the possibility of experience-dependent plasticity, frequent parental praise would lead to increased posterior insular gray matter volume in children. Our study is the first to elucidate the relationship between a specific positive parenting behavior and brain structure in children.
BackgroundThe aims of this study were to investigate glaucomatous morphological changes quantitatively in the visual cortex of the brain with voxel-based morphometry (VBM), a normalizing MRI technique, and to clarify the relationship between glaucomatous damage and regional changes in the visual cortex of patients with open-angle glaucoma (OAG).MethodsThirty-one patients with OAG (age: 55.9 ± 10.7, male: female = 9: 22) and 20 age-matched controls (age: 54.9 ± 9.8, male: female = 10: 10) were included in this study. The cross-sectional area (CSA) of the optic nerve was manually measured with T2-weighed MRI. Images of the visual cortex were acquired with T1-weighed 3D magnetization-prepared rapid acquisition with gradient echo (MPRAGE) sequencing, and the normalized regional visual cortex volume, i.e., gray matter density (GMD), in Brodmann areas (BA) 17, 18, and 19, was calculated with a normalizing technique based on statistic parametric mapping 8 (SPM8) analysis. We compared the regional GMD of the visual cortex in the control subjects and OAG patients. Spearman’s rank correlation analysis was used to determine the relationship between optic nerve CSA and GMD in BA 17, 18, and 19.ResultsWe found that the normal and OAG patients differed significantly in optic nerve CSA (p < 0.001) and visual cortex GMD in BA 17 (p = 0.030), BA 18 (p = 0.003), and BA 19 (p = 0.005). In addition, we found a significant correlation between optic nerve CSA and visual cortex GMD in BA 19 (r = 0.33, p = 0.023), but not in BA 17 (r = 0.17, p = 0.237) or BA 18 (r = 0.24, p = 0.099).ConclusionQuantitative MRI parametric evaluation of GMD can detect glaucoma-associated anatomical atrophy of the visual cortex in BA 17, 18, and 19. Furthermore, GMD in BA 19 was significantly correlated to the damage level of the optic nerve, as well as the retina, in patients with OAG. This is the first demonstration of an association between the cortex of the brain responsible for higher-order visual function and glaucoma severity. Evaluation of the visual cortex with MRI is thus a very promising potential method for objective examination in OAG.
Investigating the effects of gene–environment interactions (G × E) with regard to brain structure may help to elucidate the putative mechanisms associated with psychiatric risk. rs1360780 (C/T) is a functional single-nucleotide polymorphism (SNP) in the gene encoding FK506–binding protein 5 (FKBP5), which is involved in the regulation of the hypothalamic–pituitary–adrenal (HPA) axis stress responses. The minor (T) allele of FKBP5 is considered a risk allele for stress-related disorders, due to the overproduction of FKBP5, which results in impaired communication of stress signals with the HPA axis. Previous studies have reported that interactions between childhood maltreatment and the rs1360780 genotype affect structures in subcortical areas of the brain. However, it is unclear how this SNP modulates the association between non-adverse environments and brain structure. In this study, we examined the interactive effect of the rs1360780 genotype and maternal acceptance on the regional gray matter volume (rGMV) in 202 Japanese children. Maternal acceptance was assessed using a Japanese psychological questionnaire for mothers. Whole-brain multiple regression analysis using voxel-based morphometry showed a significant positive association between maternal acceptance and rGMV in the left thalamus of T-allele carriers, while a significant negative association was found in C/C homozygotes. Post-hoc analysis revealed that at or below the 70th percentiles of maternal acceptance, the T-allele carriers had a reduced thalamic rGMV compared with that of C/C homozygotes. Thus, our investigation indicated that the effect of the maternal acceptance level on brain development was different, depending on the rs1360780 genotype. Importantly, we found that the differences in brain structure between the T-allele carriers and C/C homozygotes at low to moderate levels of maternal acceptance, which is not equivalent to maltreatment. The present study contributes to the G × E research by highlighting the necessity to investigate the role of non-adverse environmental factors.
Aging societies are one of the major problems faced in the modern world. Promoting subjective wellbeing is a key component in helping individuals positively accept and adapt to psychological and physical changes during their aging process. Tourism is one of the activities that have been demonstrated to promote subjective wellbeing. However, motivation for tourism and its benefits to subjective wellbeing among the older adults have rarely been discussed. The current study aimed to investigate whether tourism contributes to the subjective wellbeing of older adults. We examined the relationships between travel frequency, subjective wellbeing, and the personal trait of curiosity, mediated by the factor of family budget situation. The results demonstrated that diverse curiosity motivates individuals to travel; thus, diverse curiosity positively correlates to subjective wellbeing, both directly as well as indirectly through travel frequency. However, this relationship is limited by the factor of family budget, with tourism contributing to the subjective wellbeing of only well-off older adults. This study concludes that tourism has potential to contribute to subjective wellbeing during later stages of life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.