Oral ulcer is the most common oral disease and leads to pain during meals and speaking, reducing the quality of life of patients. Recent evidence using animal models suggests that oral ulcers induce cyclooxygenase-dependent spontaneous pain and cyclooxygenase-independent mechanical allodynia. Endothelin-1 is upregulated in oral mucosal inflammation, although it has not been shown to induce pain in oral ulcers. In the present study, we investigated the involvement of endothelin-1 signaling with oral ulcer-induced pain using our proprietary assay system in conscious rats. Endothelin-1 was significantly upregulated in oral ulcers experimentally induced by topical acetic acid treatment, while endothelin-1 production was suppressed by antibacterial pretreatment. Spontaneous nociceptive behavior in oral ulcer model rats was inhibited by swab applications of BQ-788 (ET receptor antagonist), ONO-8711 (prostanoid receptor EP antagonist), and HC-030031 (TRPA1 antagonist). Prostaglandin E production in the ulcers was suppressed by BQ-788. Mechanical allodynia in the model was inhibited not only by BQ-788 and HC-030031 but also by BQ-123 (ET receptor antagonist), SB-366791 (TRPV1 antagonist), and RN-1734 (TRPV4 antagonist). In naive rats, submucosal injection of endothelin-1 caused mechanical allodynia that was sensitive to HC-030031 and SB-366791 but not to RN-1734. These results suggest that endothelin-1 production following oral bacterial invasion via ulcerative regions elicits TRPA1-mediated spontaneous pain. This pain likely occurs through an indirect route that involves ET receptor-accelerated prostanoid production. Endothelin-1 elicits directly TRPA1- and TRPV1-mediated mechanical allodynia via both ET and ET receptors on nociceptive fibers. The TRPV4-mediated allodynia component seems to be independent of endothelin signaling. These findings highlight the potential of endothelin signaling blockers as effective analgesic approaches for oral ulcer patients.
Dysphagia is caused not only by neurological and/or structural damage but also by medication. We hypothesized memantine, dextromethorphan, diazepam, and baclofen, all commonly used drugs with central sites of action, may regulate swallowing function. Swallows were evoked by upper airway (UA)/pharyngeal distension, punctate mechanical stimulation using a von Frey filament, capsaicin or distilled water (DW) applied topically to the vocal folds, and electrical stimulation of a superior laryngeal nerve (SLN) in anesthetized rats and were documented by recording electromyographic activation of the suprahyoid and thyrohyoid muscles and by visualizing laryngeal elevation. The effects of intraperitoneal or topical administration of each drug on swallowing function were studied. Systemic administration of diazepam and baclofen, but not memantine or dextromethorphan, inhibited swallowing evoked by mechanical, chemical, and electrical stimulation. Both benzodiazepines and GABA receptor antagonists diminished the inhibitory effects of diazepam, whereas a GABA receptor antagonist diminished the effects of baclofen. Topically applied diazepam or baclofen had no effect on swallowing. These data indicate that diazepam and baclofen act centrally to inhibit swallowing in anesthetized rats. Systemic administration of diazepam and baclofen, but not memantine or dextromethorphan, inhibited swallowing evoked by mechanical, chemical, and electrical stimulation. Both benzodiazepines and GABA receptor antagonists diminished the inhibitory effects of diazepam, whereas a GABA receptor antagonist diminished the effects of baclofen. Topical applied diazepam or baclofen was without effect on swallowing. Diazepam and baclofen act centrally to inhibit swallowing in anesthetized rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.