Online discussion of the ensuing pandemic exemplifies the extent and complexity of information required to understand human perception. Social media has proven to be a viable medium for identifying actionable data and analyzing public perception. As health sectors all over the world battled to obtain accurate information regarding COVID-19, this research focused on gauging public perceptions of the vaccine. The public reception of the vaccine can be determined by public perception. This study explores how to use machine learning to understand human perceptions in the context of the COVID-19 vaccine. Natural Language Processing (NLP) was employed to detect pro-and anti-vaccine tweets, while two machine learning classification models were used to study the patterns derived from the analysis. The study analyzed people's perceptions of the vaccine by presenting the results from a geographic region, while learning patterns that are likely to be associated with pro-or anti-vaccine perceptions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.