This paper investigates the application of deep Convolutional Neural Network (CNN) for herbal plant recognition through leaf identification. Traditional plant identification is often time-consuming due to varieties as well as similarities possessed within the plant species. This study shows that a deep CNN model can be created and enhanced using multiple parameters to boost recognition accuracy performance. This study also shows the significant effects of the multi-layer model on small sample sizes to achieve reasonable performance. Furthermore, data augmentation provides more significant benefits on the overall performance. Simple augmentations such as resize, flip and rotate will increase accuracy significantly by creating invariance and preventing the model from learning irrelevant features. A new dataset of the leaves of various herbal plants found in Malaysia has been constructed and the experimental results achieved 99% accuracy
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.