The oxidation of low concentrations of hydrogen sulfide with air over activated carbon was studied over the temperature range 24‐200°C using both fixed and fluid bed reactors. The predominant reaction, H2S + ½ Oa → H2O + S, was found to have an order of 0.5 with respect of H2S concentration. Activity of the catalyst decreased as the amount of sulfur deposited on it increased. Indirect evidence suggests that adsorption of water by the carbon also decreases its activity as a catalyst at lower temperatures. Values of the activation energy and the frequency factor were determined for various sulfur loadings using the fixed bed reaction system. Regeneration of the carbon loaded with sulfur was studied at temperatures between 150 and 500°C using steam as a carrier gas. Bright yellow sulfur was recovered. The regenerated carbon was shown to have its original activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.