Quantitative analysis of methylene blue (MB) has been performed with Surface Enhanced Raman Scattering, SERS, using citrate reduced silver colloid activated with NaCl. In this study, the combination of SERS occurring at the proximity of the plasmon surface and of resonance Raman with excitation wavelength matched to the maximum absorbance of the molecule being analyzed, was successfully applied to maximize the Raman scattering intensity. The surface‐enhanced resonance Raman scattering (SERRS) spectra of aqueous solutions of the dye at various concentrations were collected in right‐angle scattering geometry configuration which results favorable when nanocolloidal dispersions are used. The MB concentration was correlated with the intensity of the peak centered at 1,625 cm−1 in the SERRS spectrum and this correlation resulted in an extremely sensitive quantitative investigation of the MB with limit of detection in pM level. Among others, this method can be easily applied for the examination of both the selectivity of waste water purification membranes for relevant small molecular weight contaminants or/and the solar photocatalytic effectiveness of such membranes for the degradation of pertinent pollutants by their quantitative assessment in the permeate at very low concentration range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.