Summary
1.The thermoregulatory capabilities of 18 species of Alaskan bees spanning nearly two orders of magnitude of body mass were measured. Thoracic temperature, measured across the temperature range at which each species forages, was regressed against operative (environmental) temperature to determine bees' abilities to maintain relatively constant thoracic temperatures across a range of operative temperatures (thermoregulatory performance). 2. Previous studies on insect thermoregulation have compared thoracic temperature with ambient air temperature. Operative temperature, which integrates air temperature, solar radiation and effects of wind, was estimated by measuring the temperature of a fresh, dead bee in the field environment. It is suggested that this is a more accurate measure of the thermal environment experienced by the insect and also allows direct comparisons of insects under different microclimate conditions, such as in sun and shade. 3. Simple regression analysis of species and family means, and analysis of phylogenetically based independent contrasts showed thermoregulatory capability, ability to elevate thoracic temperature, and minimum thoracic temperature necessary for initiating flight all increased with body size. 4. Bumble-bees were better thermoregulators than solitary bees primarily as a consequence of their larger body size. However, their thermoregulatory abilities were slightly, but significantly, better than predicted from body size alone, suggesting an added role of pelage and/or physiology. Large solitary bees were better thermoregulators than small solitary bees apparently as a result of body-size differences, with small bees acting as thermal conformers.
Centella asiatica (CA), commonly named gotu kola, is an Ayurvedic herb used to enhance memory and nerve function. To investigate the potential use of CA in Alzheimer's disease (AD), we examined the effects of a water extract of CA (GKW) in the Tg2576 mouse, a murine model of AD with high β-amyloid burden. Orally administered GKW attenuated β-amyloid-associated behavioral abnormalities in these mice. In vitro, GKW protected SH-SY5Y cells and MC65 human neuroblastoma cells from toxicity induced by exogenously added and endogenously generated β-amyloid, respectively. GKW prevented intracellular β-amyloid aggregate formation in MC65 cells. GKW did not show anticholinesterase activity or protect neurons from oxidative damage and glutamate toxicity, mechanisms of current AD therapies. GKW is rich in phenolic compounds and does not contain asiatic acid, a known CA neuroprotective triterpene. CA thus offers a unique therapeutic mechanism and novel active compounds of potential relevance to the treatment of AD.
Increasing evidence suggests that Alzheimer's disease (AD) is associated with oxidative damage that is caused in part by mitochondrial dysfunction. Here we investigated the feasibility of modifying Alzheimer pathology with the mitochondrial antioxidant coenzyme Q (CoQ). Exogenous CoQ protected MC65 neuroblastoma cells from amyloid precursor protein C-terminal fragment (APP CTF)-induced neurotoxicity in a concentration dependent manner, with concentrations of 6.25 µM and higher providing near complete protection. Dietary supplementation with CoQ at a dose of 10 g/kg diet to C65/Bl6 mice for one month significantly suppressed brain protein carbonyl levels, which are markers of oxidative damage. Treatment for one month with 2 g lovastatin/kg diet, which interferes with CoQ synthesis, resulted in a significant lowering of brain CoQ10 levels. Mitochondrial energetics (brain ATP levels and mitochondrial membrane potential) were unaffected by either CoQ or lovastatin treatment. Our results suggest that oral CoQ may be a viable antioxidant strategy for neurodegenerative disease. Our data supports a trial of CoQ in an animal model of AD in order to determine whether a clinical trial is warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.