IntroductionMeal composition is known to affect glycemic variability and glucose control in type 1 diabetes. The objective of this work was to evaluate the effect of high carbohydrate meals of different nutritional composition and alcohol on the postprandial glucose response in patients with type 1 diabetes.Research design and methodsTwelve participants were recruited to this randomized crossover trial. Following a 4-week run-in period, participants received a mixed meal on three occasions with the same carbohydrate content but different macronutrient composition: high protein-high fat with alcohol (0.7g/kg body weight, beer), high protein-high fat without alcohol, and low protein-low fat without alcohol at 2-week intervals. Plasma and interstitial glucose, insulin, glucagon, growth hormone, cortisol, alcohol, free fatty acids, lactate, and pH concentrations were measured during 6 hours. A statistical analysis was then carried out to determine significant differences between studies.ResultsSignificantly higher late postprandial glucose was observed in studies with higher content of fats and proteins (p=0.0088). This was associated with lower time in hypoglycemia as compared with the low protein and fat study (p=0.0179), at least partially due to greater glucagon concentration in the same period (p=0.04). Alcohol significantly increased lactate, decreased pH and growth hormone, and maintained free fatty acids suppressed during the late postprandial phase (p<0.001), without significant changes in plasma glucose.ConclusionsOur data suggest that the addition of proteins and fats to carbohydrates increases late postprandial blood glucose. Moreover, alcohol consumption together with a mixed meal has relevant metabolic effects without any increase in the risk of hypoglycemia, at least 6 hours postprandially.Trial registration numberNCT03320993.
Continuous glucose monitors (CGM) have improved the management of patients with type 1 diabetes (T1D), with glucose oxidase (GOx)-based sensors being the most used. However, they are potentially subject to both electrochemical and enzymatic interferences, including those related to changes of pH. The objective of this study is to investigate the effect of ethanol, given as beer along with a mixed meal, on the accuracy of a commercial GOx-CGM. Data from 12 T1D participants in a randomized crossover trial to evaluate the effect of meal composition and alcohol consumption on postprandial glucose concentration were used. Absolute error (AE) and mean absolute relative difference (MARD) were calculated. The differences between the alcohol and nonalcohol scenarios were assessed using the Mann–Whitney U and Wilcoxon signed-rank tests. The AE in the alcohol study was low, but significantly greater as compared to the study without alcohol (p-value = 0.0418). The MARD was numerically but not significantly greater. However, both variables were greater at pH < 7.36 and significantly affected by time only in the alcohol arm. In T1D, alcohol consumption affects the accuracy of a GOx-CGM. This effect could be at least partially related to the ethanol-induced changes in pH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.