We summarize the first results from the Gould Belt Survey, obtained toward the Aquila rift and Polaris Flare regions during the science demonstration phase of Herschel. Our 70-500 μm images taken in parallel mode with the SPIRE and PACS cameras reveal a wealth of filamentary structure, as well as numerous dense cores embedded in the filaments. Between ∼350 and 500 prestellar cores and ∼45-60 Class 0 protostars can be identified in the Aquila field, while ∼300 unbound starless cores and no protostars are observed in the Polaris field. The prestellar core mass function (CMF) derived for the Aquila region bears a strong resemblance to the stellar initial mass function (IMF), already confirming the close connection between the CMF and the IMF with much better statistics than earlier studies. Comparing and contrasting our Herschel results in Aquila and Polaris, we propose an observationally-driven scenario for core formation according to which complex networks of long, thin filaments form first within molecular clouds, and then the densest filaments fragment into a number of prestellar cores via gravitational instability.
Abstract. We present the results of the first extensive mid-infrared (IR) imaging survey of the ρ Ophiuchi embedded cluster, performed with the ISOCAM camera on board the ISO satellite. The main ρ Ophiuchi molecular cloud L1688, as well as the two secondary clouds L1689N and L1689S, have been completely surveyed for point sources at 6.7 µm and 14.3 µm. A total of 425 sources are detected in ∼0.7 deg 2 , including 16 Class I, 123 Class II, and 77 Class III young stellar objects (YSOs). Essentially all of the mid-IR sources coincide with near-IR sources, but a large proportion of them are recognized for the first time as YSOs. Our dual-wavelength survey allows us to identify essentially all the YSOs with IR excess in the embedded cluster down to Fν ∼ 10-15 mJy. It more than doubles the known population of Class II YSOs and represents the most complete census to date of newly formed stars in the ρ Ophiuchi central region. There are, however, reasons to believe that several tens of Class III YSOs remain to be identified below L ∼ 0.2 L . The mid-IR luminosities of most (∼65%) Class II objects are consistent with emission from purely passive circumstellar disks. The stellar luminosity function of the complete sample of Class II YSOs is derived with good accuracy down to L ∼ 0.03 L . It is basically flat (in logarithmic units) below L ∼ 2 L , exhibits a possible local maximum at L ∼ 1.5 L , and sharply falls off at higher luminosities. A modeling of the luminosity function, using available pre-main sequence tracks and plausible star formation histories, allows us to derive the mass distribution of the Class II YSOs which arguably reflects the initial mass function (IMF) of the embedded cluster. After correction for the presence of unresolved binary systems, we estimate that the IMF in ρ Ophiuchi is well described by a two-component power law with a low-mass index of −0.35 ± 0.25, a high-mass index of −1.7 (to be compared with the Salpeter value of −1.35), and a break occurring at M flat = 0.55 ± 0.25 M . This IMF is flat with no evidence for a low-mass cutoff down to at least ∼0.06 M .
We present the first results from the science demonstration phase for the Hi-GAL survey, the Herschel key program that will map the inner Galactic plane of the Milky Way in 5 bands. We outline our data reduction strategy and present some science highlights on the two observed 2 • × 2 • tiles approximately centered at l = 30 • and l = 59 • . The two regions are extremely rich in intense and highly structured extended emission which shows a widespread organization in filaments. Source SEDs can be built for hundreds of objects in the two fields, and physical parameters can be extracted, for a good fraction of them where the distance could be estimated. The compact sources (which we will call cores' in the following) are found for the most part to be associated with the filaments, and the relationship to the local beam-averaged column density of the filament itself shows that a core seems to appear when a threshold around A V ∼ 1 is exceeded for the regions in the l = 59 • field; a A V value between 5 and 10 is found for the l = 30 • field, likely due to the relatively higher distances of the sources. This outlines an exciting scenario where diffuse clouds first collapse into filaments, which later fragment to cores where the column density has reached a critical level. In spite of core L/M ratios being well in excess of a few for many sources, we find core surface densities between 0.03 and 0.5 g cm −2 . Our results are in good agreement with recent MHD numerical simulations of filaments forming from large-scale converging flows.
Context. Fomalhaut is a young (2 ± 1 × 10 8 years), nearby (7.7 pc), 2 M star that is suspected to harbor an infant planetary system, interspersed with one or more belts of dusty debris. Aims. We present far-infrared images obtained with the Herschel Space Observatory with an angular resolution between 5.7 and 36.7 at wavelengths between 70 μm and 500 μm. The images show the main debris belt in great detail. Even at high spatial resolution, the belt appears smooth. The region in between the belt and the central star is not devoid of material; thermal emission is observed here as well. Also at the location of the star, excess emission is detected. We aim to construct a consistent image of the Fomalhaut system. Methods. We use a dynamical model together with radiative-transfer tools to derive the parameters of the debris disk. We include detailed models of the interaction of the dust grains with radiation, for both the radiation pressure and the temperature determination. Comparing these models to the spatially resolved temperature information contained in the images allows us to place strong constraints on the presence of grains that will be blown out of the system by radiation pressure. We use this to derive the dynamical parameters of the system. Results. The appearance of the belt points toward a remarkably active system in which dust grains are produced at a very high rate by a collisional cascade in a narrow region filled with dynamically excited planetesimals. Dust particles with sizes below the blow-out size are abundantly present. The equivalent of 2000 one-km-sized comets are destroyed every day, out of a cometary reservoir amounting to 110 Earth masses. From comparison of their scattering and thermal properties, we find evidence that the dust grains are fluffy aggregates, which indicates a cometary origin. The excess emission at the location of the star may be produced by hot dust with a range of temperatures, but may also be due to gaseous free-free emission from a stellar wind.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.