Proton-transfer-reaction mass spectrometry (PTR-MS) allows real-time measurements of volatile organic compounds (VOCs) in air with a high sensitivity and a fast time response. The use of PTR-MS in atmospheric research has expanded rapidly in recent years, and much has been learned about the instrument response and specificity of the technique in the analysis of air from different regions of the atmosphere. This paper aims to review the progress that has been made. The theory of operation is described and allows the response of the instrument to be described for different operating conditions. More accurate determinations of the instrument response involve calibrations using standard mixtures, and some results are shown. Much has been learned about the specificity of PTR-MS from inter-comparison studies as well the coupling of PTR-MS with a gas chromatographic interface. The literature on this issue is reviewed and summarized for many VOCs of atmospheric interest. Some highlights of airborne measurements by PTR-MS are presented, including the results obtained in fresh and aged forest-fire and urban plumes. Finally, the recent work that is focused on improving the technique is discussed.
[1] An extensive set of volatile organic compounds (VOCs) and particulate organic matter (POM) was measured in polluted air during the New England Air Quality Study in 2002. Using VOC ratios, the photochemical age of the sampled air masses was estimated. This approach was validated (1) by comparing the observed rates at which VOCs were removed from the atmosphere with the rates expected from OH oxidation, (2) by comparing the VOC emission ratios inferred from the data with the average composition of urban air, and (3) by the ability to describe the increase of an alkyl nitrate with time in terms of the chemical kinetics. A large part of the variability observed for oxygenated VOCs (OVOCs) and POM could be explained by a description that includes the removal of the primary anthropogenic emissions, the formation and removal of secondary anthropogenic species, and a biogenic contribution parameterized by the emissions of isoprene. The OVOC sources determined from the data are compared with the available literature, and a satisfactory agreement is obtained. The observed sub-mm POM was highly correlated with secondary anthropogenic gas-phase species, strongly suggesting that the POM was from secondary anthropogenic sources. The results are used to describe the speciation and total mass of gas-and particle-phase organic carbon as a function of the photochemical age of an urban air mass. Shortly after emission the organic carbon mass is dominated by primary VOCs, while after two days the dominant contribution is from OVOCs and sub-mm POM. The total measured organic carbon mass decreased by about 40% over the course of two days. The increase in sub-mm POM could not be explained by the removal of aromatic precursors alone, suggesting that other species must have contributed and/or that the mechanism for POM formation is more efficient than previously assumed.Citation: de Gouw, J. A., et al. (2005), Budget of organic carbon in a polluted atmosphere: Results from the New England Air
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.