We report new radio imaging of the large scale radio structure of M87 with the VLA at 90 cm. These new images show the complex structure of the radio emission more clearly than previous attempts, some of which date back to the 1940's. The images suggest that the outward flow from the M87 nucleus extends well beyond the 2 kpc jet. Two "bubbles" of synchrotron emission appear to be inflated by this flow. A simple model of the emission, combined with our knowledge of the inner jet, suggests that the energy input into to this region from the M87 nucleus exceeds the energy being radiated away as X-rays. This argues that the region within 40 kpc of the center of M87 is currently dominated by energy input from the M87 nucleus. The gas in the region is expanding, not flowing inward as is envisioned in the cooling flow model.
We present the first results from a 500 ks Chandra ACIS-I observation of M87. At soft energies (0.5Y1.0 keV), we detect filamentary structures associated with the eastern and southwestern X-ray and radio arms. Many filaments are spatially resolved with widths of $300 pc. This filamentary structure is particularly striking in the eastern arm, where we suggest the filaments are outer edges of a series of plasma-filled, buoyant bubbles whose ages differ by $6 ; 10 6 yr. These X-ray structures may be influenced by magnetic filamentation. At hard energies (3.5Y7.5 keV), we detect a nearly circular ring of outer radius 2.8 0 (13 kpc), which provides an unambiguous signature of a weak shock, driven by an outburst from the supermassive black hole (SMBH ). The density rise in the shock is shock / 0 % 1:3 (Mach number, M % 1:2). The observed spectral hardening in the ring corresponds to a temperature rise T shock /T 0 % 1:2, or M % 1:2, in agreement with the Mach number derived independently from the gas density. Thus, for the first time, we detect gas temperature and density jumps associated with a classical shock in the atmosphere around a SMBH. We also detect two additional surface brightness edges and pressure enhancements at radii of $0.6 0 and $1 0 . The $0.6 0 feature may be overpressurized thermal gas surrounding the relativistic plasma in the radio cocoon, the ''piston,'' produced by the current episode of AGN activity. The overpressurized gas is surrounded by a cool gas shell. The $1 0 feature may be an additional weak shock from a secondary outburst. In an earlier episode, the piston was responsible for driving the 2.8 0 shock.
The Crab pulsar was discovered by the occasional exceptionally bright radio pulses it emits, subsequently dubbed 'giant' pulses. Only two other pulsars are known to emit giant pulses. There is no satisfactory explanation for the occurrence of giant pulses, nor is there a complete theory of the pulsar emission mechanism in general. Competing models for the radio emission mechanism can be distinguished by the temporal structure of their coherent emission. Here we report the discovery of isolated, highly polarized, two-nanosecond subpulses within the giant radio pulses from the Crab pulsar. The plasma structures responsible for these emissions must be smaller than one metre in size, making them by far the smallest objects ever detected and resolved outside the Solar System, and the brightest transient radio sources in the sky. Only one of the current models--the collapse of plasma-turbulent wave packets in the pulsar magnetosphere--can account for the nanopulses we observe.
Our high time resolution observations of individual pulses from the Crab pulsar show that both the time and frequency signatures of the interpulse are distinctly different from those of the main pulse. Main pulses can occasionally be resolved into short-lived, relatively narrowband nanoshots. We believe these nanoshots are produced by soliton collapse in strong plasma turbulence. Interpulses at centimeter wavelengths are very different. Their dynamic spectrum contains regular, microsecond-long emission bands. We have detected these bands, proportionately spaced in frequency, from 4.5 to 10.5 GHz. The bands cannot easily be explained by any current theory of pulsar radio emission; we speculate on possible new models.
We combined deep Chandra, ROSAT HRI, and XMM-Newton observations of M87 to study the impact of AGN outbursts on its gaseous atmosphere. Many X-ray features appear to be a direct result of repetitive AGN outbursts. In particular, the X-ray cavities around the jet and counter jet are likely due to the expansion of radio plasma, while rings of enhanced emission at 14 and 17 kpc are probably shock fronts associated with outbursts that began 1 − 2 × 10 7 years ago. The effects of these shocks are also seen in brightenings within the prominent X-ray arms. On larger scales, ∼50 kpc from the nucleus, depressions in the surface brightness may be remnants of earlier outbursts. As suggested for the Perseus cluster (Fabian et al.), our analysis of the energetics of the M87 outbursts argues that shocks may be the most significant channel for AGN energy input into the cooling flow atmospheres of galaxies, groups, and clusters. For M87, the mean power driving the shock outburst, 2.4 × 10 43 ergs s −1 , is three times greater than the radiative losses from the entire "cooling flow". Thus, even in the absence of other energy inputs, outbursts every 3 × 10 7 years are sufficient to quench the flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.