The objective of this study was to determine if feed sorting can be reduced and if nutrient consumption can be limited in late-lactation cows through water addition to a nutrient-dense total mixed ration (TMR) with a dry matter (DM) content greater than 60%. Twelve lactating Holstein cows (214.8±28.5 d in milk) were exposed to 2 diets in a crossover design with 28-d periods. Diets had the same ingredient composition and differed only in DM percentage, which was reduced by the addition of water. Treatment diets were (1) dry TMR (61.7% DM) and (2) wet TMR (51.9% DM). Dry matter intake and milk production (4% fat-corrected milk; FCM) were recorded for the last 14 d of each treatment period. For the final 4 d of each period, fresh feed and orts were sampled for particle size analysis and subsequent calculation of sorting activity (expressed as a percentage of predicted intake). Adding water to the diet tended to decrease the amount of DM in the fine particle fraction, increase starch concentration in the longer ration particles, and reduce starch concentration in the shortest ration particles. All cows sorted against long ration particles; the extent of this sorting did not differ between the dry and wet treatments (72.9 vs. 77.6%). There tended to be more sorting for fine ration particles on the dry diet compared with the wet (106.3 vs. 104.0%). Water addition had no effect on production, with similar DMI (27.9 vs. 26.5 kg/d), 4% FCM (28.7 vs. 27.6 kg/d), and efficiency of production (0.98 vs. 1.00 kg of 4% FCM/kg of DMI) between the dry and wet treatments. Adding water to a TMR with greater than 60% DM containing primarily haylage and corn silage forage sources may change ration particle DM distribution and particle starch content, possibly contributing to less sorting for the smallest ration particles. This research does not provide evidence that water addition to such a TMR can effectively limit DMI in late-lactation cows and, thus, improve efficiency of milk production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.