Mice, rats and guinea pigs were exposed to the smoke produced by ignition of a zinc oxide/hexachloroethane pyrotechnic composition, 1 h/day, 5 days/week, at three different dose levels, together with controls. The animals received 100 exposures except for the high dose guinea pigs, which underwent 15 exposures, because of high death rate during the first few days of exposure. The test material had very little effect on weight gain, but there was a high rate of early deaths in the top dose of mice. A variety of incidental findings was seen in both decedents and survivors, but organ specific toxicity was, with one exception, confined to the respiratory tract. The most important of these findings was a statistically significant increase in the frequency of alveologenic carcinoma in the high dose group mice (p less than 0.01) and a statistically significant trend in the prevalence of the same tumour over all dose groups and the controls. A variety of inflammatory changes was seen in the lungs of all species and some appeared to be treatment-related. Fatty change in the mouse liver was more common in the middle and high dose groups than the controls. The aetiology of the tumour incidence is discussed and it is pointed out that hexachloroethane and zinc, as well as carbon tetrachloride, which may be present in the smoke, may be animal carcinogens in appropriate circumstances. Carbon tetrachloride is a known human carcinogen.
SUMMARY.— The ability of a number of liquids to increase the permeability of human skin in vitro has been assessed in terms of their power to accelerate the percutaneous penetration of tri‐n‐propyl phosphate (TPP).
The most effective “accelerants”. 8 M‐urea and dimethylsulphoxide (DMSO), increased the permeability of full thickness skin to TPP up to 190 times, they were also amongst those compounds, which produced the greatest reduction in skin impedance and the most swelling of the stratum corneum, suggesting that part of their effectiveness may be due to an ability to lower the diffusional resistance of the stratum corneum.
The acceleratns were all able to extract soluble components from the stratum corneum; DMSO extracted lipoprotein, and chloroform‐methanol extracted phospholipids, suggesting the possibility of ultrastructural modifications consistent with an increase in permeability.
For a liquid to be a good accelerant it must also release the penetrant readily to the aquesous milieu of the viable epidermis. This process could be hindered by an excessively unfavourable partition coefficient or by the extremely low water solubility of a penetrant.
The mammalian respiratory tract is densely innervated by autonomic and sensory nerves around airways and blood vessels. Subsets of these nerves contain a number of putative neurotransmitter peptides, such as substance P and calcitonin gene-related peptide (CGRP) in sensory nerves and vasoactive intestinal polypeptide (VIP), possibly serving autonomic functions. CGRP is also found in endocrine cells in rat airway epithelium. These peptides are all pharmacologically potent effectors of bronchial and vascular smooth muscle and bronchial secretion. Their functions in vivo are less well established. We have therefore examined the effects of inhaled acrolein, a sensory irritant, on three pulmonary neuropeptides: CGRP, substance P, and VIEP. Groups of rats (n = 3 each) were exposed for 10 min to acrolein in air (Ct = 510, 1858, and 5693 mg.min/m3) or to air alone. Fifteen minutes later they were killed (pentabarbitone IP) and their respiratory tracts were dissected and fixed in 0.4 % p-benzoquinone solution. Cryostat sections were stained by indirect immunofluorescence for a general nerve marker (PGP 9.5) and neuropeptides. The acrolein-treated animals had a dose-related decrease in tracheal substance P-and CGRP-immunoreactive nerve fibers compared with controls. No change was seen in total nerve flber distribution and number (PGP 9.5) or VIP immunoreactivity, nor in CGRP-immunoreactive epithelial endocrine cells. It is concluded that the rat tracheal peptidergic nerves are a sensitive indicator of inhaled irritant substances. Their reduced immunoreactivity may be because of a release of sensory neuropeptides that could play a role in the physiological response to irritant or toxic compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.