Physiological fluctuations in the levels of hormones, nutrients, and gasses are sensed in parallel by interacting control systems distributed throughout the brain and body. We discuss the logic of this arrangement and the definitions of "sensing"; and then focus on lateral hypothalamic (LH) control of energy balance and respiration. LH neurons control diverse behavioral and autonomic processes by projecting throughout the neuraxis. Three recently characterized types of LH cells are discussed here. LH orexin/hypocretin (ORX) neurons fire predominantly during wakefulness and are thought to promote reward-seeking, arousal, obesity resistance, and adaptive thermogenesis. Bidirectional control of ORX cells by extracellular macronutrients may add a new regulatory loop to these processes. ORX neurons also stimulate breathing and are activated by acid/CO 2 in vivo and in vitro. LH melanin-concentrating hormone (MCH) neurons fire mostly during sleep, promote physical inactivity, weight gain, and may impair glucose tolerance. Reported stimulation of MCH neurons by glucose may thus modulate energy homeostasis. Leptin receptor (LepR) neurons of the LH are distinct from ORX and MCH neurons, and may suppress feeding and locomotion by signaling to the mesolimbic dopamine system and local ORX neurons. Integration within the ORX-MCH-LepR microcircuit is suggested by anatomical and behavioral data, but requires clarification with direct assays of functional connectivity. Further studies of how LH circuits counteract evolutionarily-relevant environmental fluctuations will provide key information about the logic and fragilities of brain controllers of healthy homeostasis.
Glucose-inhibited neurones are an integral part of neurocircuits regulating cognitive arousal, body weight and vital adaptive behaviours. Their firing is directly suppressed by extracellular glucose through poorly understood signalling cascades culminating in opening of post-synaptic K + or possibly Cl − channels. In mammalian brains, two groups of glucose-inhibited neurones are best understood at present: neurones of the hypothalamic arcuate nucleus (ARC) that express peptide transmitters NPY and agouti-related peptide (AgRP) and neurones of the lateral hypothalamus (LH) that express peptide transmitters orexins/hypocretins. The activity of ARC NPY/AgRP neurones promotes food intake and suppresses energy expenditure, and their destruction causes a severe reduction in food intake and body weight. The physiological actions of ARC NPY/AgRP cells are mediated by projections to numerous hypothalamic areas, as well as extrahypothalamic sites such as the thalamus and ventral tegmental area. Orexin/hypocretin neurones of the LH are critical for normal wakefulness, energy expenditure and reward-seeking, and their destruction causes narcolepsy. Orexin actions are mediated by highly widespread central projections to virtually all brain areas except the cerebellum, including monosynaptic innervation of the cerebral cortex and autonomic pre-ganglionic neurones. There, orexins act on two specific G-proteincoupled receptors generally linked to neuronal excitation. In addition to sensing physiological changes in sugar levels, the firing of both NPY/AgRP and orexin neurones is inhibited by the 'satiety' hormone leptin and stimulated by the 'hunger' hormone ghrelin. Glucose-inhibited neurones are thus well placed to coordinate diverse brain states and behaviours based on energy levels. Keywordsappetite; glucose; hypocretin; hypothalamus; orexin; sleep Discovery of hypothalamic glucose-inhibited neuronesAnimal survival depends on constantly adjusting behaviour to body energy resources. In mammals, the hypothalamus is central for this process. Hypothalamic neurones sense diverse information relevant to body energy status and translate it into coordinated changes in brain state, energy expenditure and behaviour. One of the earliest clues for how the
Non-technical summary Brain orexin/hypocretin neurons stimulate wakefulness, feeding, reward-seeking and healthy glucose balance. The activity of orexin neurons is tightly regulated by several hormones, neurotransmitters and nutrients. Intriguingly, elevated glucose concentration can block or silence the activity of orexin neurons. We identified an unexpected way to control these effects of glucose on orexin neurons. We found that supplying orexin neurons with other energy-related molecules, such as pyruvate and lactate, can stop glucose from blocking orexin neurons. We hypothesize that orexin neurons only 'see' glucose changes when the levels of other energy molecules are low, whereas high energy levels can stop glucose from regulating orexin cells. This may shed new light on understanding how the brain is influenced by changes in glucose levels during different metabolic situations, such as fasting, eating different diets, or in disease states such as diabetes and obesity.Abstract Central orexin/hypocretin neurons promote wakefulness, feeding and reward-seeking, and control blood glucose levels by regulating sympathetic outflow to the periphery. Glucose itself directly suppresses the electrical activity and cytosolic calcium levels of orexin cells. Recent in vitro studies suggested that glucose inhibition of orexin cells may be mechanistically unusual, because it persists under conditions where glucose metabolism is unlikely. To investigate this further, and to clarify whether background metabolic state regulates orexin cell glucosensing, here we analysed glucose responses of orexin cells in mouse brain slices, in the presence and absence of metabolic inhibitors and physiological energy substrates. Consistent with their documented insensitivity to glucokinase inhibitors, the glucose responses of orexin cells persisted in the presence of the mitochondrial poison oligomycin or the glial toxin fluoroacetate. Unexpectedly, in the presence of oligomycin, the magnitude of the glucose response was significantly enhanced. In turn, 2-deoxyglucose, a non-metabolizable glucose analogue, elicited larger responses than glucose. Conversely, intracellular pyruvate dose-dependently suppressed the glucose responses, an effect that was blocked by oligomycin. The glucose responses were also suppressed by intracellular lactate and ATP. Our new data suggest that other energy substrates not only fail to mimic the orexin glucose response, but paradoxically suppress it in a metabolism-dependent manner. We propose that this unexpected intrinsic property of orexin cells allows them to act as 'conditional glucosensors' that preferentially respond to glucose during reduced background energy levels.
The brain can be viewed as a sophisticated control module for stabilizing blood glucose. A review of classical behavioural evidence indicates that central circuits add predictive (feedforward/anticipatory) control to the reactive (feedback/compensatory) control by peripheral organs. The brain/cephalic control is constructed and engaged, via associative learning, by sensory cues predicting energy intake or expenditure (e.g. sight, smell, taste, sound). This allows rapidly measurable sensory information (rather than slowly generated internal feedback signals, e.g. digested nutrients) to control food selection, glucose supply for fight-or-flight responses or preparedness for digestion/absorption. Predictive control is therefore useful for preventing large glucose fluctuations. We review emerging roles in predictive control of two classes of widely projecting hypothalamic neurones, orexin/hypocretin (ORX) and melanin-concentrating hormone (MCH) cells. Evidence is cited that ORX neurones (i) are activated by sensory cues (e.g. taste, sound), (ii) drive hepatic production, and muscle uptake, of glucose, via sympathetic nerves, (iii) stimulate wakefulness and exploration via global brain projections and (iv) are glucose-inhibited. MCH neurones are (i) glucose-excited, (ii) innervate learning and reward centres to promote synaptic plasticity, learning and memory and (iii) are critical for learning associations useful for predictive control (e.g. using taste to predict nutrient value of food). This evidence is unified into a model for predictive glucose control. During associative learning, inputs from some glucose-excited neurones may promote connections between the ‘fast’ senses and reward circuits, constructing neural shortcuts for efficient action selection. In turn, glucose-inhibited neurones may engage locomotion/exploration and coordinate the required fuel supply. Feedback inhibition of the latter neurones by glucose would ensure that glucose fluxes they stimulate (from liver, into muscle) are balanced. Estimating nutrient challenges from indirect sensory cues may become more difficult when the cues become complex and variable (e.g. like human foods today). Consequent errors of predictive glucose control may contribute to obesity and diabetes.
The effects of the application of melatonin in vitro on the electrophysiological activity of suprachiasmatic neurones were characterised using novel measures of coding based on the analysis of interspike intervals. Perfusion of 1 nM melatonin in vitro (n = 53) had no consistent effect on mean spike frequency (Wilcoxon's sign rank, z = -0.01, P = 0.989), but increased the irregularity of firing (Student's paired t-test, t = -3.02, P = 0.004), as measured by the log interval entropy, and spike patterning (z = -3.43, P < 0.001), as measured by the mutual information between adjacent log intervals. Intracellular recordings in vitro in current clamp mode showed that 1 nM melatonin significantly hyperpolarised (n = 11, z = -2.35, P = 0.019) those cells that showed 'rebound' spikes upon termination of a hyperpolarising current pulse. Grouping all cells together (n = 27), melatonin application decreased the duration of the afterhyperpolarisation (z = -2.49, P = 0.013) and increased the amplitude of the depolarising afterpotential (z = -2.71, P = 0.007). The effects of melatonin seen in vitro from extracellular recordings on interspike interval coding were consistent with the changes in spike shape seen from intracellular recordings. A melatonin-induced increase in the size of the depolarising afterpotential of suprachiasmatic cells might underlie the increased irregularity of spike firing seen during the subjective night time. The method of analysis demonstrated a difference in spike firing that is not revealed by frequency alone and is consistent with the presence of a melatonin-induced depolarising current.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.