An enhancement in Brillouin light scattering of optical photons with magnons is demonstrated in magneto-optical whispering gallery mode resonators tuned to a triple-resonance point. This occurs when both the input and output optical modes are resonant with those of the whispering gallery resonator, with a separation given by the ferromagnetic resonance frequency. The identification and excitation of specific optical modes allows us to gain a clear understanding of the mode-matching conditions. A selection rule due to wave vector matching leads to an intrinsic single-sideband excitation. Strong suppression of one sideband is essential for one-to-one frequency mapping in coherent optical-to-microwave conversion.
Xylem from stems of genetically manipulated tobacco plants which had had cinnamyl alcohol dehydrogenase (CAD; EC 1.1.1.195) activity down-regulated to a greater or lesser degree (clones 37 and 49, respectively) by the insertion of antisense CAD cDNA had similar, or slightly higher, lignin contents than xylem from wild-type plants. Fourier-transform infrared (FT-IR) microspectroscopy indicated that down-regulation of CAD had resulted in the incorporation of moieties with conjugated carbonyl groups into lignin and that the overall extent of cross-linking, particularly of guaiacyl (4-hydroxy-3-methoxyphenyl) rings, in the lignin had altered. The FT-Raman spectra of manipulated xylem exhibited maxima consistent with the presence of elevated levels of aldehydic groups conjugated to a carbon-carbon double bond and a guaiacyl ring. These maxima were particularly intense in the spectra of xylem from clone 37, the xylem of which exhibits a uniform red coloration, and their absolute frequencies matched those of coniferaldehyde. Furthermore, xylem from clone 37 was found to have a higher content of carbonyl groups than that of clone 49 or the wild-type (clone 37: clone 49: wild-type; 2.4:1.6:1.0) as measured by a degradative chemical method. This is the first report of the combined use of FT-IR and FT-Raman spectroscopies to study lignin structure in situ. These analyses provide strong evidence for the incorporation of cinnamaldehyde groups into the lignin of transgenic plants with down-regulated CAD expression. In addition, these non-destructive analyses also suggest that the plants transformed with antisense CAD, in particular clone 37, may contain lignin that is less condensed (cross-linked) than that of the wild-type.
We demonstrate that yttrium iron garnet microspheres support optical whispering gallery modes similar to those in non-magnetic dielectric materials. The direction of the ferromagnetic moment tunes both the resonant frequency via the Voigt effect as well as the degree of polarization rotation via the Faraday effect. An understanding of the magneto-optical coupling in whispering gallery modes, where the propagation direction rotates with respect to the magnetization, is fundamental to the emerging field of cavity optomagnonics.
We demonstrate the long range strong coupling of magnetostatic modes in spatially separated ferromagnets mediated by a microwave frequency cavity. Two spheres of yttrium iron garnet are embedded in the cavity and their magnetostatic modes probed using a dispersive measurement technique. We find they are strongly coupled to each other even when detuned from the cavity modes. We investigate the dependence of the magnet-magnet coupling on the cavity detuning ∆, and find a 1/∆ dependence also characteristic of cavity-coupled superconducting qubits. Dark states of the coupled magnetostatic modes of the system are observed, and ascribed to mismatches between the symmetries of the modes and the drive field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.