Abstract-Following nerve injury in neonatal rats, a large proportion of motoneurons die, possibly as a consequence of an increase in vulnerability to the excitotoxic effects of glutamate. Calcium-dependent glutamate excitotoxicity is thought to play a significant role not only in injury-induced motoneuron death, but also in motoneuron degeneration in diseases such as amyotrophic lateral sclerosis (ALS). Motoneurons are particularly vulnerable to calcium influx following glutamate receptor activation, as they lack a number of calcium binding proteins, such as calbindin-D 28k and parvalbumin. Therefore, it is possible that increasing the ability of motoneurons to buffer intracellular calcium may protect them from cell death and prevent the decline in motor function that usually occurs as a consequence of motoneuron loss. In this study we have tested this possibility by examining the effect of neonatal axotomy on motoneuron survival and muscle force production in normal and transgenic mice that overexpress parvalbumin in their motoneurons.The sciatic nerve was crushed in one hindlimb of newborn transgenic and wildtype mice. The effect on motoneuron survival was assessed 8 weeks later by retrograde labelling of motoneurons innervating the tibialis anterior muscle. Following nerve injury in wildtype mice, only 20.2% (؎2.2, S.E.M.; n)4؍ of injured motoneurons survive long term compared with 47.2% (؎4.4, S.E.M.; n)4؍ in parvalbumin overexpressing mice. Surprisingly, this dramatic increase in motoneuron survival was not reflected in a significant improvement in muscle function, since 8 weeks after injury there was no improvement in either maximal twitch and tetanic force, or muscle weights.Thus, inducing spinal motoneurons to express parvalbumin protects a large proportion of motoneurons from injuryinduced cell death, but this is not sufficient to restore muscle function.
The effects of the inflammatory mediator prostaglandin E2 (PGE2) on myenteric neurons were investigated by intracellular recordings in a conventional plexus preparation. Bath application of PGE2 (1-1,000 nM) evoked a concentration-dependent and reversible slow depolarization and an augmentation of excitability in 23 of 26 AH and 12 of 13 S neurons. The amplitude of the slow depolarization ranged from 4 +/- 1 mV at 1 nM to 13 +/- 3 mV at 1 microM in S and AH neurons. In AH neurons, PGE2 evoked an increase in membrane resistance and a reduction of afterhyperpolarization. In S neurons, PGE2 evoked either an increase or a decrease in membrane resistance. PGE2 slightly reduced the amplitude of electrically evoked fast excitatory postsynaptic potentials and had no effect on slow excitatory postsynaptic potentials. Moreover, PGE2 evoked bursts of fast excitatory postsynaptic potentials and action potentials in S neurons, indicative of cyclical neural activity in the myenteric plexus. It is concluded that the inflammatory mediator PGE2 can act as an excitatory neuromodulator of gastrointestinal motility through direct action on neurons in the myenteric plexus.
The development of locomotor function in the rat spans the first 3 postnatal weeks. We have studied morphological features of the soma and dendrites of motoneurons innervating the physiological flexor muscles of the ankle, tibialis anterior and extensor digitorum longus, by intracellular injection in vitro between the first and ninth postnatal days. We obtained serial optical sections of 96 adequately filled motoneurons in whole-mounted hemisected spinal cords by confocal microscopy, projected them onto a single plane and analysed them morphometrically. On the day after birth, the somatodendritic surfaces of most such motoneurons were covered in growth-associated spiny, thorny or hair-like appendages. These had disappeared from the soma by the fourth postnatal day and from most proximal dendrites by day 7, but were still common distally on day 9. During this period there was little or no net growth of either the soma (which was still much smaller than in the adult) or the dendritic tree. A dorsal dendritic bias was present and 'sprays' of long, loosely bundled dorsal dendrites were often seen. The mean number of primary dendrites remained constant at about eight, and their combined diameter was already significantly correlated with mean soma diameter, as in the adult cat. Thus, the critical neonatal period during which these ankle flexor motoneurons are known to change their electrophysiological properties and to be particularly sensitive to interference with neuromuscular interaction is characterized by major changes in the neuronal surface, presumably linked to synaptogenesis.
The vulnerability of motoneurones to glutamate has been implicated in neurological disorders such as amyotrophic lateral sclerosis but it is not known whether specific receptor subtypes mediate this effect. In order to investigate this further, the expression of N-methyl-D-aspartate (NMDA) receptor subunits was studied during the first three post-natal weeks when motoneurones are differentially vulnerable to injury following neonatal nerve crush compared to the adult. Unilateral nerve crush was carried out at day 2 after birth (P2) which causes a decrease of 66% in motoneurone number by 14 days (P14). To study receptor expression in identified motoneurones, serial section analysis was carried out on retrogradely labelled common peroneal (CP) motoneurones by combined immunocytochemistry and in situ hybridization (ISH). mRNA levels were also quantified in homogenates from lumbar spinal cords in which the side ipsilateral to the crush was separated from the contralateral side. The NR1 subunit of the NMDA receptor was widely distributed in the spinal cord being expressed most strongly in motoneurone somata particularly during the neonatal period (P3-P7). The NR2 subunits were also expressed at higher levels in the somata and dendrites of neonatal motoneurones compared to older animals. NR2B mRNA was expressed at low to moderate levels throughout the studied period whereas NR2A mRNA levels were low until P21. Following unilateral nerve crush, an initial decrease in NR1 mRNA occurred at one day after nerve crush (P3) in labelled CP motoneurones ipsilateral to the crush which was followed by a significant increase in NR1 subunit expression at 5 days post-injury. This increase was bilateral although reaching greater significance ipsilateral to the crush compared with sham-operated animals. A significant increase in NR1 and NR2B mRNA post injury was also detected in spinal cord homogenates. In addition, the changes in levels of NR1 and NR2B mRNA were reflected by comparable bilateral changes at P7 in receptor protein determined by quantitative immunocytochemical analysis of NR1 and NR2 subunit expression in identified CP motoneurones indicating a co-ordinated regulation of receptor subunits in response to injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.