The aim of this review was to survey all fungal pathologists with an association with the journal Molecular Plant Pathology and ask them to nominate which fungal pathogens they would place in a 'Top 10' based on scientific/economic importance. The survey generated 495 votes from the international community, and resulted in the generation of a Top 10 fungal plant pathogen list for Molecular Plant Pathology. The Top 10 list includes, in rank order, (1) Magnaporthe oryzae; (2) Botrytis cinerea; (3) Puccinia spp.; (4) Fusarium graminearum; (5) Fusarium oxysporum; (6) Blumeria graminis; (7) Mycosphaerella graminicola; (8) Colletotrichum spp.; (9) Ustilago maydis; (10) Melampsora lini, with honourable mentions for fungi just missing out on the Top 10, including Phakopsora pachyrhizi and Rhizoctonia solani. This article presents a short resumé of each fungus in the Top 10 list and its importance, with the intent of initiating discussion and debate amongst the plant mycology community, as well as laying down a bench-mark. It will be interesting to see in future years how perceptions change and what fungi will comprise any future Top 10.
Summary The fungal pathogen Botrytis cinerea causes grey mould, a commercially damaging disease of strawberry. This pathogen affects fruit in the field, storage, transport and market. The presence of grey mould is the most common reason for fruit rejection by growers, shippers and consumers, leading to significant economic losses. Here, we review the biology and epidemiology of the pathogen, mechanisms of infection and the genetics of host plant resistance. The development of grey mould is affected by environmental and genetic factors; however, little is known about how B. cinerea and strawberry interact at the molecular level. Despite intensive efforts, breeding strawberry for resistance to grey mould has not been successful, and the mechanisms underlying tolerance to B. cinerea are poorly understood and under‐investigated. Current control strategies against grey mould include pre‐ and postharvest fungicides, yet they are generally ineffective and expensive. In this review, we examine available research on horticultural management, chemical and biological control of the pathogen in the field and postharvest storage, and discuss their relevance for integrative disease management. Additionally, we identify and propose approaches for increasing resistance to B. cinerea in strawberry by tapping into natural genetic variation and manipulating host factors via genetic engineering and genome editing.
Summary Pattern recognition receptors (PRRs) sense microbial patterns and activate innate immunity against attempted microbial invasions. The leucine‐rich repeat receptor kinases (LRR‐RK) FLS2 and EFR, and the LRR receptor protein (LRR‐RP) receptors RLP23 and RLP42, respectively, represent prototypical members of these two prominent and closely related PRR families. We conducted a survey of Arabidopsis thaliana immune signaling mediated by these receptors to address the question of commonalities and differences between LRR‐RK and LRR‐RP signaling. Quantitative differences in timing and amplitude were observed for several early immune responses, with RP‐mediated responses typically being slower and more prolonged than those mediated by RKs. Activation of RLP23, but not FLS2, induced the production of camalexin. Transcriptomic analysis revealed that RLP23‐regulated genes represent only a fraction of those genes differentially expressed upon FLS2 activation. Several positive and negative regulators of FLS2‐signaling play similar roles in RLP23 signaling. Intriguingly, the cytoplasmic receptor kinase BIK1, a positive regulator of RK signaling, acts as a negative regulator of RP‐type immune receptors in a manner dependent on BIK1 kinase activity. Our study unveiled unexpected differences in two closely related receptor systems and reports a new negative role of BIK1 in plant immunity.
Botrytis species are generally considered to be aggressive, necrotrophic plant pathogens. By contrast to this general perception, however, Botrytis species could frequently be isolated from the interior of multiple tissues in apparently healthy hosts of many species. Infection frequencies reached 50% of samples or more, but were commonly less, and cryptic infections were rare or absent in some plant species. Prevalence varied substantially from year to year and from tissue to tissue, but some host species routinely had high prevalence. The same genotype was found to occur throughout a host, representing mycelial spread. Botrytis cinerea and Botrytis pseudocinerea are the species that most commonly occur as cryptic infections, but phylogenetically distant isolates of Botrytis were also detected, one of which does not correspond to previously described species. Sporulation and visible damage occurred only when infected tissues were stressed, or became mature or senescent. There was no evidence of cryptic infection having a deleterious effect on growth of the host, and prevalence was probably greater in plants grown in high light conditions. Isolates from cryptic infections were often capable of causing disease (to varying extents) when spore suspensions were inoculated onto their own host as well as on distinct host species, arguing against co-adaptation between cryptic isolates and their hosts. These data collectively suggest that several Botrytis species, including the most notorious pathogenic species, exist frequently in cryptic form to an extent that has thus far largely been neglected, and do not need to cause disease on healthy hosts in order to complete their life-cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.