Statistical models for predicting failure probability of brittle materials are investigated. A formula is derived from a physical consideration for the fracture of microcracks in materials based on the general forms of a fracture criterion and a statistical distribution function incorporating the weakest link principle. The relationships of this model and other statistical models in the literature are discussed; they were found to be equivalent for isotropic materials in which microcracks are randomly distributed in all directions. The statistical model is also used in a failure analysis of the round-notch four-point bending specimen made of an AISI 1008 steel. The grain boundary carbide particles are considered to be microcracks in the plastic zone near the notch tip. The distribution function in the statistical theory is derived from the density and size distribution of carbide particles in the steel. The statistical theory for a triaxial stress state is used to predict the failure probability for any given load on the specimen. The failure loads (loads corresponding to 50 percent of failure probability) are calculated for the specimen at different temperatures. The results are compared with experimental data; good agreement is obtained.
This study is part of a research program directed at reducing stair injuries by absorbing much of the impact of a fall. Little is known about human kinetics during falls. The paper describes a laboratory stair that induces subjects to fall, but terminates the tumble before the stair is struck. The trajectory of the falling subjects provides insights into the nature of stair falls, and makes it possible to predict the forces that would be generated at impact.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.