Fluorine atoms etch silicon with a rate, RF(Si) = 2.91±0.20×10−12T1/2nFe−0.108 eV/kT Å/min, where nF (cm−3) is the atom concentration. This etching is accompanied by a chemiluminescent continuum in the gas phase which exhibits the same activation energy. These phenomena are described by the kinetics: (1) F(g)+Sisurf→SiF2(g), (2) SiF2(g) +F(g) →SiF*3(g), (3) SiF2(g) +F2(g) →SiF*3(g) +F(g), (4) SiF*3(g) →SiF3(g) +hνcontinuum where formation of SiF2 is the rate-limiting step. A detailed model of silicon gasification is presented which accounts for the low atomic fluorine reaction probability (0.00168 at room temperature) and formation of SiF2 as a direct product. Previously reported etch rates of SiO2 by atomic fluorine are high by a constant factor. The etch rate of SiO2 is RF(SiO2) = (6.14±0.49)×10−13nF T1/2e−0.163/kT Å/min and the ratio of Si to SiO2 etching by F atoms is (4.74±0.49)e−0.055/kT.
The luminescence properties of 3 μm thick, strongly emitting, and highly porous silicon films were studied using a combination of photoluminescence, transmission electron microscopy, and Fourier transform infrared spectroscopy. Transmission electron micrographs indicate that these samples have structures of predominantly 6–7 nm size clusters (instead of the postulated columns). In the as-prepared films, there is a significant concentration of Si—H bonds which is gradually replaced by Si—O bonds during prolonged aging in air. Upon optical excitation these films exhibit strong visible emission peaking at ≊690 nm. The excitation edge is shown to be emission wavelength dependent, revealing the inhomogeneous nature of both the initially photoexcited and luminescing species. The photoluminescence decay profiles observed are highly nonexponential and decrease with increasing emission energy. The 1/e times observed typically range from 1 to 50 μs. The correlation of the spectral and structural information suggests that the source of the large blue shift of the visible emission compared to the bulk Si band gap energy is likely to be due to quantum confinement in the nanometer size Si clusters. The electron-hole recombination process, on the other hand, remains unclear.
Silicon is rapidly etched by the gas-phase halogen fluorides ClF3, BrF3, BrF5, and IF5, in analogy to XeF2 etching silicon. Nearly complete selectivity over SiO2 is achieved in all cases. By contrast, ClF and Groups III and V fluorides such as NF3, BF3, PF3, and PF5 do not spontaneously etch either Si or SiO2 under the same experimental conditions. These relatively inexpensive interhalogens can be applied to pattern silicon and more generally to remove silicon or polysilicon layers without a plasma. Low-temperature plasmaless gasification of substrates by these fluorine-containing interhalogens is an economically attractive alternative to fluorine-based plasma etching.
Plasma emission actinometry has been used to study the mechanism by which small additions of oxygen (∼0.5%) enhance the rate of diamond deposition in a dilute (4%) CH4/H2 discharge at high temperature (900–1300 K). Increasing amounts of CH4 in the feed depress [H], while increasing the O2 concentration, up to ∼5%, produces a fivefold increase in atomic hydrogen in the discharge zone. Invoking a mechanism where diamond growth competes with the formation of an amorphous/graphitic inhibiting layer, these results and earlier studies suggest that oxygen (1) increases [H] which selectively etches amorphous/graphitic carbon, (2) accelerates reaction of this layer with molecular hydrogen, and (3) may itself act as a selective etchant of nondiamond carbon. As a result, the number of active diamond growth sites is increased and enhanced growth rates are observed. We also have grown diamond by alternating a CH4/He discharge with a H2/O2/He discharge and results are consistent with this mechanism. Instantaneous growth rates are very high (45 μm/h) and codeposition of nondiamond allotropes is less. The H2/O2/He discharge removes the inhibiting carbon layer more effectively, while the CH4/He plasma presumably is richer in diamond-forming precursors. Thermochemical calculations suggest that these precursors are likely to be C2H2, C2H, C2, or C atoms rather than methyl radicals (CH3) as others have postulated.
Silicon gasification by XeF2 is compared with F-atom etching under conditions typical of those used in plasma etching. Temperatures ranged from −17 to 360 °C and XeF2 pressures were between 0.05 and 2 Torr. Silicon etching by XeF2 shows a sharply different etch rate/temperature dependence than the Si/F or Si/F2 reaction systems; there is no detectable reaction between XeF2 and SiO2 in contrast to the F-atom/SiO2 system. These data indicate that physisorption can limit silicon etching by XeF2 and show that basic studies which use XeF2 as a model compound for the etching of silicon and SiO2 by F atoms should be interpreted with caution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.