This paper presents experimental data from a two-layer test sample made up of a copper layer and an AISI type 316 stainless steel (SS) layer that was heated with a laser power source. Experiments were conducted to generate high-temperature benchmark data that ranged from room temperature to 820 °C. The concept of time rescaling was employed to account for the dependence of thermal diffusivity on temperature in order to utilize the calibration integral equation method (CIEM). The future time regularization method was used to obtain a stable prediction for the surface temperature. An estimate for the future time regularization parameter was acquired through analysis of the in-depth calibration test thermocouple (TC) response. Results for three test cases consisting of selected pairs of calibration data and reconstruction data (to be predicted) are presented and discussed. Four different values of the future time regularization parameter were employed in the three test cases. The proposed nonlinear (NL) formulation improved the prediction accuracy when compared to the constant properties formulation of the CIEM. It should be emphasized that no knowledge of TC probe depth or TC response properties is required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.