Fusion could be a part of future decarbonized electricity systems, but it will need to compete with other technologies. In particular, pulsed tokamaks have a unique operational mode, and evaluating which characteristics make them economically competitive can help select between design pathways. Using a capacity expansion and operations model, we determined cost thresholds for pulsed tokamaks to reach a range of penetration levels in a future decarbonized US Eastern Interconnection. The required capital cost to reach a fusion capacity of 100 GW varied from $3000 to $7200 kW −1 , and the equilibrium penetration increases rapidly with decreasing cost. The value per unit power capacity depends on the variable operational cost and on the cost of its competition, particularly fission, much more than on the pulse cycle parameters. These findings can therefore provide initial cost targets for fusion more generally in the United States.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.