This first comprehensive checklist of the diatoms from fresh and weakly brackish water inThe Netherlands comprises 948 taxa, belonging to 776 species in 56 genera. The genera Navicula, which has a very wide ecological amplitude, and Nitzschia, which has many pollution tolerant species, are most numerous. Each taxon is identified with a unique eight-letter code, to facilitate computer processing of data. Ecological indicator values for pH, salinity, nitrogen uptake metabolism, oxygen, saprobity, trophic state and moisture are presented.
Despite the widespread application of periphytic diatoms to water quality assessment at a regional level, there is no standard European sampling protocol or associated assessment metrics. Furthermore, relatively little is known about the uncertainty in the results of such assessments. One of the objectives of the European project for the Standardisation of River Classifications (STAR) is to improve and standardise diatom assessment methods. An extensive diatom ring test, together with an audit of the project results, provided a better understanding and quantification of the uncertainty in quality assessment of running waters using diatoms. The variation in multimetric analysis shows that the choice of site and substrate for sampling, the inter-operator differences in diatom taxonomy and the counting techniques are the primary sources of uncertainty. To some extent, this variation also reveals the robustness of specific metrics in relation to the sources of uncertainty. Of the three most common substrate types tested (stone, macrophyte and sediment), macrophytes emerge as the most preferred substrate for diatom sampling when performing multimetric water quality assessment.
The ecological impact of the dithiocarbamate fungicide metiram was studied in outdoor freshwater microcosms, consisting of 14 enclosures placed in an experimental ditch. The microcosms were treated three times (interval 7 days) with the formulated product BAS 222 28F (Polyram Ò ). Intended metiram concentrations in the overlying water were 0, 4, 12, 36, 108 and 324 lg a.i./L. Responses of zooplankton, macroinvertebrates, phytoplankton, macrophytes, microbes and community metabolism endpoints were investigated. Dissipation half-life (DT 50 ) of metiram was approximately 1-6 h in the water column of the microcosm test system and the metabolites formed were not persistent. Multivariate analysis indicated treatment-related effects on the zooplankton (NOEC community = 36 lg a.i./L). Consistent treatment-related effects on the phytoplankton and macroinvertebrate communities and on the sediment microbial community could not be demonstrated or were minor. There was no evidence that metiram affected the biomass, abundance or functioning of aquatic hyphomycetes on decomposing alder leaves. The most sensitive populations in the microcosms comprised representatives of Rotifera with a NOEC of 12 lg a.i./L on isolated sampling days and a NOEC of 36 lg a.i./L on consecutive samplings. At the highest treatment-level populations of Copepoda (zooplankton) and the blue-green alga Anabaena (phytoplankton) also showed a short-term decline on consecutive sampling days (NOEC = 108 lg a.i./ L). Indirect effects in the form of short-term increases in the abundance of a few macroinvertebrate and several phytoplankton taxa were also observed. The overall community and population level no-observed-effect concentration (NOEC microcosm ) was 12-36 lg a.i./L. At higher treatment levels, including the test systems that received the highest dose, ecological recovery of affected measurement endpoints was fast (effect period \ 8 weeks).
Despite the widespread application of periphytic diatoms to water quality assessment at a regional level, there is no standard European sampling protocol or associated assessment metrics. Furthermore, relatively little is known about the uncertainty in the results of such assessments. One of the objectives of the European project for the Standardisation of River Classifications (STAR) is to improve and standardise diatom assessment methods. An extensive diatom ring test, together with an audit of the project results, provided a better understanding and quantification of the uncertainty in quality assessment of running waters using diatoms. The variation in multimetric analysis shows that the choice of site and substrate for sampling, the inter-operator differences in diatom taxonomy and the counting techniques are the primary sources of uncertainty. To some extent, this variation also reveals the robustness of specific metrics in relation to the sources of uncertainty. Of the three most common substrate types tested (stone, macrophyte and sediment), macrophytes emerge as the most preferred substrate for diatom sampling when performing multimetric water quality assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.