Influence of different levels (0, 0.15, 0.35 or 0.50%) of microparticulated whey protein (MWP) on yield and quality of low‐fat (~7.3 g/100 g) Cheddar cheese was investigated. MWP improved cheese yield due to the water‐binding ability of denatured whey protein. MWP addition decreased meltability but improved the textural properties beneficial for shredding and slicing, by decreasing sensory firmness. The results emphasise the role of MWP as an inert filler within cheese matrix, in improving cheese yield and creating a softer texture without compromising the sensory or overall quality of cheese, even with moisture increases in 0.35 or 0.50% MWP cheeses.
Cheese manufacturers indirectly determine Na in cheese by analysis of Cl using the Volhard method, assuming that all Cl came from NaCl. This method overestimates the actual Na content in cheeses when Na replacers (e.g., KCl) are used. A direct and rapid method for Na detection is needed. X-ray fluorescence spectroscopy (XRF), a mineral analysis technique used in the mining industry, was investigated as an alternative method of Na detection in cheese. An XRF method for the detection of Na in cheese was developed and compared with inductively coupled plasma optical emission spectroscopy (ICP-OES; the reference method for Na in cheese) and Cl analyzer. Sodium quantification was performed by multi-point calibration with cheese standards spiked with NaCl ranging from 0 to 4% Na (wt/wt). The Na concentration of each of the cheese standards (discs: 30mm×7mm) was quantified by the 3 methods. A single laboratory method validation was performed; linearity, precision, limit of detection, and limit of quantification were determined. An additional calibration graph was created using cheese standards made from natural or process cheeses manufactured with different ratios of Na:K. Both Na and K calibration curves were linear for the cheese standards. Sodium was quantified in a variety of commercial cheese samples. The Na data obtained by XRF were in agreement with those from ICP-OES and Cl analyzer for most commercial natural cheeses. The XRF method did not accurately determine Na concentration for several process cheese samples, compared with ICP-OES, likely due to the use of unknown types of Na-based emulsifying salts (ES). When a calibration curve was created for process cheese with the specific types of ES used for this cheese, Na content was successfully predicted in the samples. For natural cheeses, the limit of detection and limit of quantification for Na that can be determined with an acceptable level of repeatability, precision, and trueness was 82 and 246mg/100g of cheese, respectively. Calibration graphs should be created with standards that reflect the concentration range, ratio, and salt type present in the cheeses. This XRF method can be successfully used for the rapid and direct measurement of Na content in a wide variety of natural cheeses. Commercial process cheese manufacturers use proprietary blends of ES. We did find that the XRF technique worked for process cheese when the calibration graphs were created with the specific types of ES actually used.
Three Hofmeister salts (HS; sodium sulfate, sodium thiocyanate, and sodium chloride) were evaluated for their effect on the textural and rheological properties of nonfat cheese. Nonfat cheese, made by direct acidification, were sliced into discs (diameter=50 mm, thickness=2 mm) and incubated with agitation (6 h at 22°C) in 50 mL of a synthetic Cheddar cheese aqueous phase buffer (pH 5.4). The 3 HS were added at 5 concentrations (0.1, 0.25, 0.5, 0.75, and 1.0 M) to the buffer. Post-incubation, cheese slices were air dried and equilibrated in air-tight bags for 18 h at 5°C before analysis. Small amplitude oscillatory rheology properties, including the dynamic moduli and loss tangent, were measured during heating from 5 to 85°C. Hardness was determined by texture profile analysis. Acid-base buffering was performed to observe changes in the indigenous insoluble (colloidal) calcium phosphate (CCP). Moisture content decreased with increasing HS concentration. Cheeses incubated in high concentrations of SCN(-) softened earlier (i.e., loss tangent=1) compared with other HS treatments. Higher melting temperature values were observed for cheeses incubated in high concentrations of SO(4)(2-). Hardness decreased in cheeses incubated in buffers with high concentrations of SCN(-). The indigenous CCP profile of nonfat cheese was not greatly affected by incubation in Cl(-) or SCN(-), whereas buffers with high concentrations of SO(4)(2-) reduced the acid-base buffering contributed by CCP. The use of high concentrations (1.0M) of SCN(-) for incubation of cheeses resulted in a softer protein matrix at high temperatures due to the chaotropic effect of SCN(-), which weakened hydrophobic interactions between CN. Cheese samples incubated in 1.0M SO(4)(2-) buffers exhibited a stiffer protein matrix at high temperatures due to the kosmotropic effect of SO(4)(2-), which helped to strengthen hydrophobic interactions in the proteins during the heating step. This study showed that HS influenced the texture and rheology of nonfat cheese probably by altering the strength of hydrophobic interactions between CN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.