The concept of niche overlap appears in studies of the mechanisms of the maintenance of species diversity, in searches for assembly rules, and in estimation of within-community species redundancy. For plant traits measured on a continuous scale, existing indices are inadequate because they split the scale into a number of categories thus losing information. An index is easy to construct if we assume a normal distribution for each trait within a species, but this assumption is rarely true. We extend and apply an index, NO(K), which is based on kernel density functions, and can therefore work with distributions of any shape without prior assumptions. For cases where the ecologist wishes to downweight traits that are inter-correlated, we offer a variant that does this: NO(Kw). From either of these indices, an index of the mean niche overlap in a community can be calculated: NO(K,community) and NO(Kw,community). For all these indices, the variance can be calculated and formulae for this are given. To give examples of the new indices in use, we apply them to a coastal fish dataset and a sand-dune plant dataset. The former exhibits considerable non-normality, emphasising the need for kernel-based indices. Accordingly, there was a considerable difference in index values, with those for an index based on a normal distribution being significantly higher than those from an index which, being based on kernel fitting, is not biased by an assumption for the distribution. The NO(K) values were ecologically consistent for the fish species concerned, varying from 0.02 to 0.53. The sand-dune plant data also showed a wide range of overlap values. Interestingly, the least overlap was between two graminoids, which would have been placed in the same functional group in the coarse classification often used in functional-type/ecosystem-function work.
The Mediterranean Sea (0.82% of the global oceanic surface) holds 4%-18% of all known marine species (~17,000), with a high proportion of endemism [1, 2]. This exceptional biodiversity is under severe threats [1] but benefits from a system of 100 marine protected areas (MPAs). Surprisingly, the spatial congruence of fish biodiversity hot spots with this MPA system and the areas of high fishing pressure has not been assessed. Moreover, evolutionary and functional breadth of species assemblages [3] has been largely overlooked in marine systems. Here we adopted a multifaceted approach to biodiversity by considering the species richness of total, endemic, and threatened coastal fish assemblages as well as their functional and phylogenetic diversity. We show that these fish biodiversity components are spatially mismatched. The MPA system covers a small surface of the Mediterranean (0.4%) and is spatially congruent with the hot spots of all taxonomic components of fish diversity. However, it misses hot spots of functional and phylogenetic diversity. In addition, hot spots of endemic species richness and phylogenetic diversity are spatially congruent with hot spots of fishery impact. Our results highlight that future conservation strategies and assessment efficiency of current reserve systems will need to be revisited after deconstructing the different components of biodiversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.