The instability of a forced, circular shear layer in a rotating fluid has been studied experimentally and numerically. The experiments were performed with a shallow layer of water in a parabolic tank, in which it is possible to apply radial pumping and to model a geophysical beta-effect. A shear layer was produced by a secondary rotation of the central part of the parabolic vessel. In most experiments, the shear layer takes on the appearance of a sequence of vortices, the number of which decreases with increasing strength of the shear. A beta-effect may prevent the formation of a steady vortex chain. Continuous pumping of fluid from the periphery to the centre or vice versa leads to an azimuthal velocity field corresponding to a point vortex. This azimuthal flow appears to stabilize the shear flow if it is opposite to the inner rotation, and to be destabilizing otherwise.The numerical investigations consist of the solution of the quasi-geostrophic equation in a geometry similar to the experimental situation and with a term modelling the experimental forcing. Though the numerical computations are based on a two-dimensional model, they capture the essential features of the instability and the resulting vortex structures.
A comparison is made between numerical and experimental results for spin-up from rest in a rectangular container. The numerical results were obtained by using a three-dimensional finite volume method on a supercomputer. The experiments were performed with water, using tracer particles floating at the free surface in order to visualize the flow field. The numerical and experimental results are in good agreement. They show the formation of a stable three-cell pattern. In contrast to similar experiments performed at higher angular velocities, the center cell of this pattern appears to be anticyclonic. Initially, the relation between vorticity ω and streamfunction ψ of this organized flow is linear, but it is seen to evolve slowly into a relation with ∂2ω/∂ψ2<0.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.