Outgassing remains a pertinent issue for high power applications and is exacerbated by the high field driven, localized heating environments commonly encountered. Here, molecular dynamics simulations are performed for a simple model-based assessment of outgassing from electrodes. Our results of temperature dependent diffusion coefficients for hydrogen in copper agree well with experimental reports over a wide range spanning 300 K to 1330 K. Separate results are also obtained for transport of hydrogen to ascertain whether a grain-boundary would facilitate channeled transport or work to impede flow by clustering the gas atoms. Finally, the use of a tungsten overlayer on copper is evaluated as a material-based strategy for mitigating outgassing. It is demonstrated that a few monolayers of tungsten coating on the outer surface can be effective in significantly reducing outdiffusion at 700 K.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.