In drupe‐type fruits, pit hardening, resulting from sclerification of the fruit endocarp, is widely used as a phenological marker for both physiological studies and orchard management. In spite of the importance of pit hardening for understanding fruit development processes and for agricultural practices, however, its quantification has remained obscure and precision has been lost with time and lax usage. In this study, we used a mechanical device to measure the physical pressure required to break the olive pit in order to define the timing of pit hardening more precisely and to permit closer observation of its relationship to fruit and endocarp growth and development. Over 4 years we found that pit‐hardening pressure increased following a sigmoid pattern, at first gradually but then with a large and rapid increment of change in a relatively short period of time. The rapid acceleration of hardening began at the time when pit longitudinal and transverse diameters attained their maximum size. That timing is consistent with the anatomical differentiation of the sclerified endocarp cells which can no longer expand nor divide. The results improve our knowledge of pit hardening and provide a more precise context for evaluating the metabolic costs, physiological interactions and genetic controls of stone fruit endocarp development. On a practical level, the association of the intensification of pit‐breaking pressure with the cessation of pit expansion indicates that pit diameters can be useful morphological markers to identify the onset of this period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.