The National Institutes of Health Consensus Development Program convened surgeons, endocrinologists, pathologists, biostatisticians, radiologists, oncologists, and other health care professionals, as well as members of the general public, to address the causes, prevalence, and natural history of clinically inapparent adrenal masses, or "incidentalomas"; the appropriate evaluation and treatment of such masses; and directions for future research. Improvements in abdominal imaging techniques have increased detection of adrenal incidentalomas, and because the prevalence of these masses increases with age, appropriate management of adrenal tumors will be a growing challenge in our aging society. To address six predetermined questions, the 12-member nonfederal, nonadvocate state-of-the-science panel heard presentations from 21 experts in adrenal incidentalomas and consulted a systematic review of medical literature on the topic provided by the Agency for Healthcare Research and Quality and an extensive bibliography developed by the National Library of Medicine. The panel recommended a 1-mg dexamethasone suppression test and measurement of plasma-free metanephrines for all patients with an adrenal incidentaloma; additional measurement of serum potassium and plasma aldosterone concentration-plasma renin activity ratio for patients with hypertension; and surgery for patients with biochemical evidence of pheochromocytoma, patients with tumors greater than 6 cm, and patients with tumors greater than 4 cm who also meet other criteria. The panel also advocated a multidisciplinary approach to managing adrenal incidentalomas. The statement is an independent report of the panel and is not a policy statement of the National Institutes of Health or the federal government.
Carney complex is a multiple neoplasia syndrome featuring cardiac, endocrine, cutaneous, and neural tumors, as well as a variety of pigmented lesions of the skin and mucosae. Carney complex is inherited as an autosomal dominant trait and may simultaneously involve multiple endocrine glands, as in the classic multiple endocrine neoplasia syndromes 1 and 2. Carney complex also has some similarities to McCuneAlbright syndrome, a sporadic condition that is also characterized by multiple endocrine and nonendocrine tumors. Carney complex shares skin abnormalities and some nonendocrine tumors with the lentiginoses and certain of the hamartomatoses, particularly Peutz-Jeghers syndrome, with which it shares mucosal lentiginosis and an unusual gonadal tumor, large-cell calcifying Sertoli cell tumor. Careful clinical analysis has enabled positional cloning efforts to identify two chromosomal loci harboring potential candidate genes for Carney complex. Most recently, at the 17q22-24 locus, the tumor suppressor gene PRKAR1A, coding for the type 1alpha regulatory subunit of PKA, was found to be mutated in approximately half of the known Carney complex kindreds. PRKAR1A acts a classic tumor suppressor gene as demonstrated by loss of heterozygosity at the 17q22-24 locus in tumors associated with the complex. The second locus, at chromosome 2p16, to which most (but not all) of the remaining kindreds map, is also involved in the molecular pathogenesis of Carney complex tumors, as demonstrated by multiple genetic changes at this locus, including loss of heterozygosity and copy number gain. Despite the known genetic heterogeneity in the disease, clinical analysis has not detected any corresponding phenotypic differences between patients with PRKAR1A mutations and those without. This article summarizes the clinical manifestations of Carney complex from a worldwide collection of affected patients and also presents revised diagnostic criteria for Carney complex. In light of the recent identification of mutations in the PRKAR1A gene, an estimate of penetrance and recommendations for genetic screening are provided.
Carney complex (CNC) is an autosomal dominant multiple neoplasia syndrome, which has been linked to loci on 2p16 and 17q22-24. We recently reported that PRKAR1A, which codes for the type 1A regulatory subunit of protein kinase A (PKA), is a tumor suppressor gene on chromosome 17 that is mutated in some CNC families. To evaluate the spectrum of PRKAR1A mutations, we identified its genomic structure and screened for mutations in 54 CNC kindreds (34 families and 20 patients with sporadic disease). Fourteen families were informative for linkage analysis: four of four families that mapped to 17q had PRKAR1A mutations, whereas there were no mutations found in seven families exhibiting at least one recombination with 17q. In six of the latter, CNC mapped to 2p16. PRKAR1A mutations were also found in 12 of 20 non-informative families and 7 of 20 sporadic cases. Altogether, 15 distinct PRKAR1A mutations were identified in 22 of 54 kindreds (40.7%). In 14 mutations, the sequence change was predicted to lead to a premature stop codon; one altered the initiator ATG codon. Mutant mRNAs containing a premature stop codon were unstable, as a result of nonsense-mediated mRNA decay. Accordingly, the predicted truncated PRKAR1A protein products were absent in these cells. We conclude that (i) genetic heterogeneity exists in CNC; and (ii) all of the CNC alleles on 17q are functionally null mutations of PRKAR1A. CNC is the first human disease recognized to be caused by mutations of the PKA holoenzyme, a critical component of cellular signaling.
Gastrointestinal stromal tumors (GISTs) may be caused by germline mutations of the KIT and plateletderived growth factor receptor-a (PDGFRA) genes and treated by Imatinib mesylate (STI571) or other protein tyrosine kinase inhibitors. However, not all GISTs harbor these genetic defects and several do not respond to STI571 suggesting that other molecular mechanisms may be implicated in GIST pathogenesis. In a subset of patients with GISTs, the lesions are associated with paragangliomas; the condition is familial and transmitted as an autosomal-dominant trait. We investigated 11 patients with the dyad of 'paraganglioma and gastric stromal sarcoma'; in eight (from seven unrelated families), the GISTs were caused by germline mutations of the genes encoding subunits B, C, or D (the SDHB, SDHC and SDHD genes, respectively). In this report, we present the molecular effects of these mutations on these genes and the clinical information on the patients. We conclude that succinate dehydrogenase deficiency may be the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.